3,547 research outputs found

    Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor

    Get PDF
    The identity of the interstitial light atom in the center of the FeMo cofactor of nitrogenase has been enigmatic since its discovery. Atomic-resolution x-ray diffraction data and an electron spin echo envelope modulation (ESEEM) analysis now provide direct evidence that the ligand is a carbon species

    Mathematical processing of experimental data ignition composite solid propellant solitary heated particles

    Get PDF
    This article presents a mathematical method for processing experimental data. Were obtained mathematical expressions for delay the ignition of condensed matter by single particles heated from the initial temperature of the particles of the obtained data, and select the most appropriate dependences

    Identification of Intrahelical Bifurcated H‑Bonds as a New Type of Gate in K+ Channels

    Get PDF
    Gating of ion channels is based on structural transitions between open and closed states. To uncover the chemical basis of individual gates, we performed a comparative experimental and computational analysis between two K+ channels, KcvS and KcvNTS. These small viral encoded K+ channel proteins, with a monomer size of only 82 amino acids, resemble the pore module of all complex K+ channels in terms of structure and function. Even though both proteins share about 90% amino acid sequence identity, they exhibit different open probabilities with ca. 90% in KcvNTS and 40% in KcvS. Single channel analysis, mutational studies and molecular dynamics simulations show that the difference in open probability is caused by one long closed state in KcvS. This state is structurally created in the tetrameric channel by a transient, Ser mediated, intrahelical hydrogen bond. The resulting kink in the inner transmembrane domain swings the aromatic rings from downstream Phes in the cavity of the channel, which blocks ion flux. The frequent occurrence of Ser or Thr based helical kinks in membrane proteins suggests that a similar mechanism could also occur in the gating of other ion channels. Includes Supporting Informatio

    Identification of Intrahelical Bifurcated H‑Bonds as a New Type of Gate in K+ Channels

    Get PDF
    Gating of ion channels is based on structural transitions between open and closed states. To uncover the chemical basis of individual gates, we performed a comparative experimental and computational analysis between two K+ channels, KcvS and KcvNTS. These small viral encoded K+ channel proteins, with a monomer size of only 82 amino acids, resemble the pore module of all complex K+ channels in terms of structure and function. Even though both proteins share about 90% amino acid sequence identity, they exhibit different open probabilities with ca. 90% in KcvNTS and 40% in KcvS. Single channel analysis, mutational studies and molecular dynamics simulations show that the difference in open probability is caused by one long closed state in KcvS. This state is structurally created in the tetrameric channel by a transient, Ser mediated, intrahelical hydrogen bond. The resulting kink in the inner transmembrane domain swings the aromatic rings from downstream Phes in the cavity of the channel, which blocks ion flux. The frequent occurrence of Ser or Thr based helical kinks in membrane proteins suggests that a similar mechanism could also occur in the gating of other ion channels. Includes Supporting Informatio

    Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147

    Full text link
    We study the geometry and the physical conditions in the inner (AU-scale) circumstellar region around the young Herbig Be star MWC 147 using long-baseline spectro-interferometry in the near-infrared (NIR K-band, VLTI/AMBER observations and PTI archive data) as well as the mid-infrared (MIR N-band, VLTI/MIDIobservations). The emission from MWC 147 is clearly resolved and has a characteristic physical size of approx. 1.3 AU and 9 AU at 2.2 micron and 11 micron respectively (Gaussian diameter). The spectrally dispersed AMBER and MIDI interferograms both show a strong increase in the characteristic size towards longer wavelengths, much steeper than predicted by analytic disk models assuming power-law radial temperature distributions. We model the interferometric data and the spectral energy distribution of MWC 147 with 2-D, frequency-dependent radiation transfer simulations. This analysis shows that models of spherical envelopes or passive irradiated Keplerian disks (with vertical or curved puffed-up inner rim) can easily fit the SED, but predict much lower visibilities than observed; the angular size predicted by such models is 2 to 4 times larger than the size derived from the interferometric data, so these models can clearly be ruled out. Models of a Keplerian disk with optically thick gas emission from an active gaseous disk (inside the dust sublimation zone), however, yield a good fit of the SED and simultaneously reproduce the absolute level and the spectral dependence of the NIR and MIR visibilities. We conclude that the NIR continuum emission from MWC 147 is dominated by accretion luminosity emerging from an optically thick inner gaseous disk, while the MIR emission also contains contributions from the outer, irradiated dust disk.Comment: 44 pages, 15 figures, accepted for publication in The Astrophysical Journal. The quality of the figures was slightly reduced in order to comply with the astro-ph file-size restrictions. You can find a high-quality version of the paper at http://www.mpifr-bonn.mpg.de/staff/skraus/papers/mwc147.pd

    Global patterns of ecologically unequal exchange:Implications for sustainability in the 21st century

    Get PDF
    Ecologically unequal exchange theory posits asymmetric net flows of biophysical resources from poorer to richer countries. To date, empirical evidence to support this theoretical notion as a systemic aspect of the global economy is largely lacking. Through environmentally-extended multi-regional input-output modelling, we provide empirical evidence for ecologically unequal exchange as a persistent feature of the global economy from 1990 to 2015. We identify the regions of origin and final consumption for four resource groups: materials, energy, land, and labor. By comparing the monetary exchange value of resources embodied in trade, we find significant international disparities in how resource provision is compensated. Value added per ton of raw material embodied in exports is 11 times higher in high-income countries than in those with the lowest income, and 28 times higher per unit of embodied labor. With the exception of embodied land for China and India, all other world regions serve as net exporters of all types of embodied resources to high-income countries across the 1990–2015 time period. On aggregate, ecologically unequal exchange allows high-income countries to simultaneously appropriate resources and to generate a monetary surplus through international trade. This has far-reaching implications for global sustainability and for the economic growth prospects of nations

    Molecular diagnostics helps to identify distinct subgroups of spinal astrocytomas

    Get PDF
    Primary spinal cord astrocytomas are rare, hence few data exist about the prognostic significance of molecular markers. Here we analyze a panel of molecular alterations in association with the clinical course. Histology and genome sequencing was performed in 26 spinal astrocytomas operated upon between 2000 and 2020. Next-generation DNA/RNA sequencing (NGS) and methylome analysis were performed to determine molecular alterations. Histology and NGS allowed the distinction of 5 tumor subgroups: glioblastoma IDH wildtype (GBM); diffuse midline glioma H3 K27M mutated (DMG-H3); high-grade astrocytoma with piloid features (HAP); diffuse astrocytoma IDH mutated (DA), diffuse leptomeningeal glioneural tumors (DGLN) and pilocytic astrocytoma (PA). Within all tumor entities GBM (median OS: 5.5~months), DMG-H3 (median OS: 13~months) and HAP (median OS: 8~months) showed a fatal prognosis. DMG-H3 tend to emerge in adolescence whereas GBM and HAP develop in the elderly. HAP are characterized by CDKN2A/B deletion and ATRX mutation. 50% of PA tumors carried a mutation in the PIK3CA gene which is seemingly associated with better outcome (median OS: PIK3CA mutated 107.5 vs 45.5~months in wildtype PA). This exploratory molecular profiling of spinal cord astrocytomas allows to identify distinct subgroups by combining molecular markers and histomorphology. DMG-H3 tend to develop in adolescence with a similar dismal prognosis like GBM and HAP in the elderly. We here describe spinal HAP with a distinct molecular profile for the first time
    corecore