3,049 research outputs found

    Academic Perspectives on Agribusiness: An International Survey

    Get PDF
    The IFAMR is published by (IFAMA) the International Food and Agribusiness Management Review. www.ifama.orgpromotion and tenure, agribusiness, teaching, grantsmanship, research, Agribusiness, Institutional and Behavioral Economics, Productivity Analysis, Teaching/Communication/Extension/Profession, Q130,

    Lateral-Mode Vibration of Microcantilever-Based Sensors in Viscous Fluids Using Timoshenko Beam Theory

    Get PDF
    To more accurately model microcantilever resonant behavior in liquids and to improve lateral-mode sensor performance, a new model is developed to incorporate viscous fluid effects and Timoshenko beam effects (shear deformation, rotatory inertia). The model is motivated by studies showing that the most promising geometries for lateral-mode sensing are those for which Timoshenko effects are most pronounced. Analytical solutions for beam response due to harmonic tip force and electrothermal loadings are expressed in terms of total and bending displacements, which correspond to laser and piezoresistive readouts, respectively. The influence of shear deformation, rotatory inertia, fluid properties, and actuation/detection schemes on resonant frequencies ( ) and quality factors ( ) are examined, showing that Timoshenko beam effects may reduce and by up to 40% and 23%, respectively, but are negligible for width-to-length ratios of 1/10 and lower. Comparisons with measurements (in water) indicate that the model predicts the qualitative data trends, but underestimates the softening that occurs in stiffer specimens, indicating that support deformation becomes a factor. For thinner specimens, the model estimates quite well, but exceeds the observed values for thicker specimens, showing that the Stokes resistance model employed should be extended to include pressure effects for these geometries.[2014-0157

    Timoshenko Beam Model for Lateral Vibration of Liquid-Phase Microcantilever-Based Sensors

    Get PDF
    Dynamic-mode microcantilever-based devices are potentially well suited to biological and chemical sensing applications. However, when these applications involve liquid-phase detection, fluid-induced dissipative forces can significantly impair device performance. Recent experimental and analytical research has shown that higher in-fluid quality factors (Q) are achieved by exciting microcantilevers in the lateral flexural mode. However, experimental results show that, for microcantilevers having larger width-to-length ratios, the behaviors predicted by current analytical models differ from measurements. To more accurately model microcantilever resonant behavior in viscous fluids and to improve understanding of lateral-mode sensor performance, a new analytical model is developed, incorporating both viscous fluid effects and “Timoshenko beam” effects (shear deformation and rotatory inertia). Beam response is examined for two harmonic load types that simulate current actuation methods: tip force and support rotation. Results are expressed in terms of total beam displacement and beam displacement due solely to bending deformation, which correspond to current detection methods used with microcantilever-based devices (optical and piezoresistive detection, respectively). The influences of the shear, rotatory inertia, and fluid parameters, as well as the load/detection scheme, are investigated. Results indicate that load/detection type can impact the measured resonant characteristics and, thus, sensor performance, especially at larger values of fluid resistance

    Timoshenko Beam Effects in Lateral-mode Microcantilever-based Sensors in Liquids

    Get PDF
    Recent experimental and analytical research has shown that higher in-fluid quality factors (Q) are achieved by actuating microcantilevers in the lateral flexural mode, especially for microcantilevers having larger width-to-length ratios. However, experimental results show that for these geometries the resonant characteristics predicted by the existing analytical models differ from the measurements. A recently developed analytical model to more accurately predict the resonant behaviour of these devices in viscous fluids is described. The model incorporates viscous fluid effects via a Stokes-type fluid resistance assumption and `Timoshenko beam\u27 effects (shear deformation and rotatory inertia). Unlike predictions based on Euler-Bernoulli beam theory, the new theoretical results for both resonant frequency and Q exhibit the same trends as seen in the experimental data for in-water measurements as the beam slenderness decreases. An analytical formula for Q is also presented to explicitly illustrate how Q depends on beam geometry and on beam and fluid properties. Beam thickness effects are also examined and indicate that the analytical results yields good numerical estimates of Q for the thinner (5 μm) specimens tested, but overestimate Q for the thicker (20 μm) specimens, thus suggesting that a more accurate fluid resistance model should be introduced in the future for the latter case

    CHANGES IN THE KINEMATIC AND KINETIC PROFILE OF HANDCYCLING PROPULSION DUE TO INCREASING WORKLOADS

    Get PDF
    The aim of this study was to examine changes in handcycling propulsion kinematics and kinetics due to increasing workloads. Twelve non-disabled male triathletes without handcycling experience performed a familiarisation protocol and an incremental step test in a recumbent racing handcycle that was attached to an ergometer. During the incremental test, the tangential crank kinetics, 3D joint kinematics, blood lactate and the rate of perceived exertion (local and global) were identified. The participants showed a significant increase in shoulder internal rotation and abduction and a decrease in elbow flexion and retroversion. Future studies should expand the test spectrum, consider the examination of muscle activation patterns (MAP) and replicate the study with elite handcyclists

    Glucose and fructose hydrogel enhances running performance, exogenous carbohydrate oxidation, and gastrointestinal tolerance

    Get PDF
    Purpose Beneficial effects of carbohydrate (CHO) ingestion on exogenous CHO oxidation and endurance performance require a well-functioning gastrointestinal (GI) tract. However, GI complaints are common during endurance running. This study investigated the effect of a CHO solution-containing sodium alginate and pectin (hydrogel) on endurance running performance, exogenous and endogenous CHO oxidation, and GI symptoms. Methods Eleven trained male runners, using a randomized, double-blind design, completed three 120-min steady-state runs at 68% V˙O2max, followed by a 5-km time-trial. Participants ingested 90 g·h−1 of 2:1 glucose–fructose (13C enriched) as a CHO hydrogel, a standard CHO solution (nonhydrogel), or a CHO-free placebo during the 120 min. Fat oxidation, total and exogenous CHO oxidation, plasma glucose oxidation, and endogenous glucose oxidation from liver and muscle glycogen were calculated using indirect calorimetry and isotope ratio mass spectrometry. GI symptoms were recorded throughout the trial. Results Time-trial performance was 7.6% and 5.6% faster after hydrogel ([min:s] 19:29 ± 2:24, P < 0.001) and nonhydrogel (19:54 ± 2:23, P = 0.002), respectively, versus placebo (21:05 ± 2:34). Time-trial performance after hydrogel was 2.1% faster (P = 0.033) than nonhydrogel. Absolute and relative exogenous CHO oxidation was greater with hydrogel (68.6 ± 10.8 g, 31.9% ± 2.7%; P = 0.01) versus nonhydrogel (63.4 ± 8.1 g, 29.3% ± 2.0%; P = 0.003). Absolute and relative endogenous CHO oxidation was lower in both CHO conditions compared with placebo (P < 0.001), with no difference between CHO conditions. Absolute and relative liver glucose oxidation and muscle glycogen oxidation were not different between CHO conditions. Total GI symptoms were not different between hydrogel and placebo, but GI symptoms were higher in nonhydrogel compared with placebo and hydrogel (P < 0.001). Conclusion The ingestion of glucose and fructose in hydrogel form during running benefited endurance performance, exogenous CHO oxidation, and GI symptoms compared with a standard CHO solution
    corecore