49 research outputs found

    Materials for light-induced water splitting: In situ controlled surface preparation of GaPN epilayers grown lattice-matched on Si(100)

    Get PDF
    Energy storage is a key challenge in solar-driven renewable energy conversion. We promote a photochemical diode based on dilute nitride GaPN grown lattice-matched on Si(100), which could reach both high photovoltaic efficiencies and evolve hydrogen directly without external bias. Homoepitaxial GaP(100) surface preparation was shown to have a significant impact on the semiconductor-water interface formation. Here, we grow a thin, pseudomorphic GaP nucleation buffer on almost single-domain Si(100) prior to GaPN growth and compare the GaP_(0.98)N_(0.02)/Si(100) surface preparation to established P- and Ga-rich surfaces of GaP/Si(100). We apply reflection anisotropy spectroscopy to study the surface preparation of GaP_(0.98)N_(0.02) in situ in vapor phase epitaxy ambient and benchmark the signals to low energy electron diffraction, photoelectron spectroscopy, and x-ray diffraction. While the preparation of the Ga-rich surface is hardly influenced by the presence of the nitrogen precursor 1,1-dimethylhydrazine (UDMH), we find that stabilization with UDMH after growth hinders well-defined formation of the V-rich GaP_(0.98)N_(0.02)/Si(100) surface. Additional features in the reflection anisotropy spectra are suggested to be related to nitrogen incorporation in the GaP bulk

    Water-induced modifications of GaP(100) and InP(100) surfaces studied by photoelectron spectroscopy and reflection anisotropy spectroscopy

    Get PDF
    In this work, we investigate the initial interaction of water and oxygen with different surface reconstructions of GaP(100) applying photoelectron spectroscopy, low-energy electron diffraction, and reflection anisotropy spectroscopy. Surfaces were prepared by metal-organic vapour phase epitaxy, transferred to ultra-high vacuum, and exposed to oxygen or water vapour at room temperature. The (2 4) reconstructed, Ga-rich surface is more sensitive and reactive to adsorption, bearing a less ordered surface reconstruction upon exposure and indicating a mixture of dissociative and molecular water adsorption. The p(2 2)=c(4 2) P-rich surface, on the other hand, is less reactive, but shows a new surface symmetry after water adsorption. Correlating findings of photoelectron spectroscopy with reflection anisotropy spectroscopy could pave the way towards optical in-situ monitoring of electrochemical surface modifications with reflection anisotropy spectroscopy

    The interface of GaP(100) and H_2O studied by photoemission and reflection anisotropy spectroscopy

    Get PDF
    We study the initial interaction of adsorbed H_2O with P-rich and Ga-rich GaP(100) surfaces. Atomically well defined surfaces are prepared by metal-organic vapour phase epitaxy and transferred contamination-free to ultra-high vacuum, where water is adsorbed at room temperature. Finally, the surfaces are annealed in vapour phase ambient. During all steps, the impact on the surface properties is monitored with in situ reflection anisotropy spectroscopy (RAS). Photoelectron spectroscopy and low-energy electron diffraction are applied for further in system studies. After exposure up to saturation of the RA spectra, the Ga-rich (2 Ă— 4) surface reconstruction exhibits a sub-monolayer coverage in form of a mixture of molecularly and dissociatively adsorbed water. For the p(2 Ă— 2)/c(4 Ă— 2) P-rich surface reconstruction, a new c(2 Ă— 2) superstructure forms upon adsorption and the uptake of adsorbate is significantly reduced when compared to the Ga-rich surface. Our findings show that microscopic surface reconstructions of GaP(100) greatly impact the mechanism of initial interface formation with water, which could benefit the design of e.g. photoelectrochemical water splitting devices

    Immunogenicity and safety of coadministration of COVID-19 and influenza vaccination.

    Get PDF
    Seasonal influenza vaccination is established as important infection prevention measure, especially among highly exposed healthcare workers (HCWs) [1]. Coadministration with the third dose of COVID-19 vaccine could be an efficient strategy protecting HCWs from two major viral respiratory infections [2–4]. To date, the humoral immunogenicity and side effects of a coadministered third COVID-19 and a seasonal quadrivalent influenza vaccine are still unclear, the available data is limited in transferability to the general public [5–7]. This preference-based non-randomised controlled study examines the antibody-mediated immunogenicity and vaccine-related side effects of mRNA-based COVID-19 and seasonal influenza vaccine coadministration in HCWs

    Photovoltaisches Halbleiterbauelement zur Konversion von Strahlungsleistung in elektrische Leistung, Verfahren zu dessen Herstellung und dessen Verwendung

    No full text
    The invention relates to a photovoltaic semiconductor component for converting monochromatic radiation power into electric power, comprising at least one front-side sub-cell which faces the radiation incident on the semiconductor component and a rear-side sub-cell which is made of interconnected semiconductor layers. The materials of the semiconductor layers and/or the layer thicknesses thereof are selected such that at least one sub-cell exhibits an increased photon absorption compared to the other sub-cells. The invention likewise relates to a method for producing said photovoltaic semiconductor components. The photovoltaic components are used as radiation receivers in optical power transmission for example for monitoring high-voltage lines, passive optical networks, the supply of energy to and in active implants, disturbance-free electromagnetic field measurement, lightning-protected monitoring of wind turbines, explosion-proof sensor systems in airplane tanks, wireless power transmission, galvanically isolated power supply for sensor systems in high-voltage environments, wireless charging of consumer electronics, and the supply of power to underwater observatories

    Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell

    No full text
    A tandem solar cell consisting of a III-V nanowire subcell on top of a planar Si subcell is a promising candidate for next generation photovoltaics due to the potential for high efficiency. However, for success with such applications, the geometry of the system must be optimized for absorption of sunlight. Here, we consider this absorption through optics modeling. Similarly, as for a bulk dual-junction tandem system on a silicon bottom cell, a bandgap of approximately 1.7 eV is optimum for the nanowire top cell. First, we consider a simplified system of bare, uncoated III-V nanowires on the silicon substrate and optimize the absorption in the nanowires. We find that an optimum absorption in 2000 nm long nanowires is reached for a dense array of approximately 15 nanowires per square micrometer. However, when we coat such an array with a conformal indium tin oxide (ITO) top contact layer, a substantial absorption loss occurs in the ITO. This ITO could absorb 37% of the low energy photons intended for the silicon subcell. By moving to a design with a 50 nm thick, planarized ITO top layer, we can reduce this ITO absorption to 5%. However, such a planarized design introduces additional reflection losses. We show that these reflection losses can be reduced with a 100 nm thick SiO2 anti-reflection coating on top of the ITO layer. When we at the same time include a Si3N4 layer with a thickness of 90 nm on the silicon surface between the nanowires, we can reduce the average reflection loss of the silicon cell from 17% to 4%. Finally, we show that different approximate models for the absorption in the silicon substrate can lead to a 15% variation in the estimated photocurrent density in the silicon subcell

    The annual-hydrogen-yield-climatic-response ratio: evaluating the real-life performance of integrated solar water splitting devices

    No full text
    Integrated solar water splitting devices that produce hydrogen without the use of power inverters operate outdoors and are hence exposed to varying weather conditions. As a result, they might sometimes work at non-optimal operation points below or above the maximum power point of the photovoltaic component, which would directly translate into efficiency losses. Up until now, however, no common parameter describing and quantifying this and other real-life operating related losses (e.g. spectral mismatch) exists in the community. Therefore, the annual-hydrogen-yield-climatic-response (AHYCR) ratio is introduced as a figure of merit to evaluate the outdoor performance of integrated solar water splitting devices. This value is defined as the ratio between the real annual hydrogen yield and the theoretical yield assuming the solar-to-hydrogen device efficiency at standard conditions. This parameter is derived for an exemplary system based on state-of-the-art AlGaAs//Si dual-junction solar cells and an anion exchange membrane electrolyzer using hourly resolved climate data from a location in southern California and from reanalysis data of Antarctica. This work will help to evaluate, compare and optimize the climatic response of solar water splitting devices in different climate zones

    Climatic response of thermally coupled solar water splitting in Antarctica

    No full text
    Hydrogen is a versatile energy carrier. When produced with renewable energy by water splitting, it is a carbon neutral alternative to fossil fuels. The industrialization process of this technology is currently dominated by electrolyzers powered by solar or wind energy. For small scale applications, however, more integrated device designs for water splitting using solar energy might optimize hydrogen production due to lower balance of system costs and a smarter thermal management. Such devices offer the opportunity to thermally couple the solar cell and the electrochemical compartment. In this way, heat losses in the absorber can be turned into an efficiency boost for the device via simultaneously enhancing the catalytic performance of the water splitting reactions, cooling the absorber, and decreasing the ohmic losses.[1,2] However,integrated devices (sometimes also referred to as “artificial leaves”), currently suffer from a lower technology readiness level (TRL) than the completely decoupled approach

    The annual-hydrogen-yield-climatic-response ratio: evaluating the real-life performance of integrated solar water splitting devices

    No full text
    Integrated solar water splitting devices that produce hydrogen without the use of power inverters operate outdoors and are hence exposed to varying weather conditions. As a result, they might sometimes work at non-optimal operation points below or above the maximum power point of the photovoltaic component, which would directly translate into efficiency losses. Up until now, however, no common parameter describing and quantifying this and other real-life operating related losses (e.g. spectral mismatch) exists in the community. Therefore, the annual-hydrogen-yield-climatic-response (AHYCR) ratio is introduced as a figure of merit to evaluate the outdoor performance of integrated solar water splitting devices. This value is defined as the ratio between the real annual hydrogen yield and the theoretical yield assuming the solar-to-hydrogen device efficiency at standard conditions. This parameter is derived for an exemplary system based on state-of-the-art AlGaAs//Si dual-junction solar cells and an anion exchange membrane electrolyzer using hourly resolved climate data from a location in southern California and from reanalysis data of Antarctica. Moreover, the advantage of devices operating at low current densities over completely decoupled PV-electrolysis is discussed. This work will help to evaluate, compare and optimize the climatic response of solar water splitting devices in different climate zones
    corecore