40,431 research outputs found

    Newtonian Perturbations on Models with Matter Creation

    Full text link
    Creation of Cold Dark Matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin and Brandenberger, MNRAS {\bf 291}, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the Λ\LambdaCDM model. The difference between the CCDM and Λ\LambdaCDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple χ2\chi^{2}-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances the CCDM scenario analysed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating Λ\LambdaCDM cosmology.Comment: Physical Review D in press, 10 pages, 4 figure

    Degree-dependent intervertex separation in complex networks

    Get PDF
    We study the mean length (k)\ell(k) of the shortest paths between a vertex of degree kk and other vertices in growing networks, where correlations are essential. In a number of deterministic scale-free networks we observe a power-law correction to a logarithmic dependence, (k)=Aln[N/k(γ1)/2]Ckγ1/N+...\ell(k) = A\ln [N/k^{(\gamma-1)/2}] - C k^{\gamma-1}/N + ... in a wide range of network sizes. Here NN is the number of vertices in the network, γ\gamma is the degree distribution exponent, and the coefficients AA and CC depend on a network. We compare this law with a corresponding (k)\ell(k) dependence obtained for random scale-free networks growing through the preferential attachment mechanism. In stochastic and deterministic growing trees with an exponential degree distribution, we observe a linear dependence on degree, (k)AlnNCk\ell(k) \cong A\ln N - C k. We compare our findings for growing networks with those for uncorrelated graphs.Comment: 8 pages, 3 figure

    Hamming distance and mobility behavior in generalized rock-paper-scissors models

    Full text link
    This work reports on two related investigations of stochastic simulations which are widely used to study biodiversity and other related issues. We first deal with the behavior of the Hamming distance under the increase of the number of species and the size of the lattice, and then investigate how the mobility of the species contributes to jeopardize biodiversity. The investigations are based on the standard rules of reproduction, mobility and predation or competition, which are described by specific rules, guided by generalization of the rock-paper-scissors game, valid in the case of three species. The results on the Hamming distance indicate that it engenders universal behavior, independently of the number of species and the size of the square lattice. The results on the mobility confirm the prediction that it may destroy diversity, if it is increased to higher and higher values.Comment: 7 pages, 9 figures. To appear in EP

    Developing a site-conditions map for seismic hazard Assessment in Portugal

    Get PDF
    The evaluation of site effects on a broad scale is a critical issue for seismic hazard and risk assessment, land use planning and emergency planning. As characterization of site conditions based on the shear-wave velocity has become increasingly important, several methods have been proposed in the literature to estimate its average over the first thirty meters (Vs30) from more extensively available data. These methods include correlations with geologic-geographic defined units and topographic slope. In this paper we present the first steps towards the development of a site–conditions map for Portugal, based on a regional database of shear-wave velocity data, together with geological, geographic, and lithological information. We computed Vs30 for each database site and classified it according to the corresponding geological-lithological information using maps at the smallest scale available (usually 1:50000). We evaluated the consistency of Vs30 values within generalized-geological classes, and assessed the performance of expedient methodologies proposed in the literature

    Simulations of a mortality plateau in the sexual Penna model for biological ageing

    Full text link
    The Penna model is a strategy to simulate the genetic dynamics of age-structured populations, in which the individuals genomes are represented by bit-strings. It provides a simple metaphor for the evolutionary process in terms of the mutation accumulation theory. In its original version, an individual dies due to inherited diseases when its current number of accumulated mutations, n, reaches a threshold value, T. Since the number of accumulated diseases increases with age, the probability to die is zero for very young ages (n = T). Here, instead of using a step function to determine the genetic death age, we test several other functions that may or may not slightly increase the death probability at young ages (n < T), but that decreases this probability at old ones. Our purpose is to study the oldest old effect, that is, a plateau in the mortality curves at advanced ages. Imposing certain conditions, it has been possible to obtain a clear plateau using the Penna model. However, a more realistic one appears when a modified version, that keeps the population size fixed without fluctuations, is used. We also find a relation between the birth rate, the age-structure of the population and the death probability.Comment: submitted to Phys. Rev.

    Kinetic modelling of epitaxial film growth with up- and downward step barriers

    Full text link
    The formation of three-dimensional structures during the epitaxial growth of films is associated to the reflection of diffusing particles in descending terraces due to the presence of the so-called Ehrlich-Schwoebel (ES) barrier. We generalize this concept in a solid-on-solid growth model, in which a barrier dependent on the particle coordination (number of lateral bonds) exists whenever the particle performs an interlayer diffusion. The rules do not distinguish explicitly if the particle is executing a descending or an ascending interlayer diffusion. We show that the usual model, with a step barrier in descending steps, produces spurious, columnar, and highly unstable morphologies if the growth temperature is varied in a usual range of mound formation experiments. Our model generates well-behaved mounded morphologies for the same ES barriers that produce anomalous morphologies in the standard model. Moreover, mounds are also obtained when the step barrier has an equal value for all particles independently if they are free or bonded. Kinetic roughening is observed at long times, when the surface roughness w and the characteristic length ξ\xi scale as w tβw ~ t^\beta and ξ tζ\xi ~ t^\zeta where β0.31\beta \approx 0.31 and ζ0.22\zeta \approx 0.22, independently of the growth temperature.Comment: 15 pages, 7 figure
    corecore