14 research outputs found

    Multiparameter flow cytometry assay to analyze the pulmonary T cell profiles in the ovine model of respiratory syncytial virus infection.

    Get PDF
    Here, we present a protocol to analyze the T cell profiles of the neonatal ovine lung during respiratory syncytial virus (RSV) infection. The protocol delivers standardized multiparameter flow cytometry (FCM) analysis of CD4+, CD8+, regulatory, and γδ T cells isolated from lung, lymph nodes, and bronchoalveolar lavages (BALs). We detail the preparation of RSV and transtracheal inoculation of newborn lambs. We then describe tissue isolation and preparation of cell suspensions, followed by FCM acquisition to identify different T cell subsets. For complete details on the use and execution of this protocol, please refer to Démoulins et al. (2021)

    Generation of precision-cut slice cultures of human placenta.

    Get PDF
    We present a protocol to generate an advanced ex vivo model of human placenta. We use a vibrating tissue slicer to obtain precision-cut slices representative of the entire thickness of human placenta. This approach delivers standardized cultures with a preserved microstructure and cellular composition comparable to the native tissue. We applied this system to study SARS-CoV-2 infection at the maternal-fetal interface. Moreover, this system can be used to investigate the basic functions of the human placenta in health and disease. For complete details on the use and execution of this protocol, please refer to Fahmi et al. (2021)

    The Human Upper Respiratory Tract Epithelium Is Susceptible to Flaviviruses

    Get PDF
    Flaviviruses replicate in a wide variety of species and have a broad cellular tropism. They are isolated from various body fluids, and Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) RNAs have been detected in nasopharyngeal swabs. Consequently, we evaluated the cellular tropism and host responses upon ZIKV, JEV, WNV, and Usutu virus (USUV) infection using a relevant model of the human upper respiratory tract epithelium based on primary human nasal epithelial cells (NECs) cultured at the air-liquid interface. NECs were susceptible to all the viruses tested, and confocal analysis showed evidence of infection of ciliated and non-ciliated cells. Each flavivirus productively infected NECs, leading to apical and basolateral live virus shedding with particularly high basal release for JEV and WNV. As demonstrated by a paracellular permeability assay, the integrity of the epithelium was not affected by flavivirus infection, suggesting an active release of live virus through the basolateral surface. Also, we detected a significant secretion of interferon type III and the pro-inflammatory cytokine IP-10/CXCL10 upon infection with JEV. Taken together, our data suggest that the human upper respiratory tract epithelium is a target for flaviviruses and could potentially play a role in the spread of infection to other body compartments through basolateral virus release. Undoubtedly, further work is required to evaluate the risks and define the adapted measures to protect individuals exposed to flavivirus-contaminated body fluids

    Disrupting the HDAC6-ubiquitin interaction impairs infection by influenza and Zika virus and cellular stress pathways.

    Get PDF
    The deacetylase HDAC6 has tandem catalytic domains and a zinc finger domain (ZnF) binding ubiquitin (Ub). While the catalytic domain has an antiviral effect, the ZnF facilitates influenza A virus (IAV) infection and cellular stress responses. By recruiting Ub via the ZnF, HDAC6 promotes the formation of aggresomes and stress granules (SGs), dynamic structures associated with pathologies such as neurodegeneration. IAV subverts the aggresome/HDAC6 pathway to facilitate capsid uncoating during early infection. To target this pathway, we generate designed ankyrin repeat proteins (DARPins) binding the ZnF; one of these prevents interaction with Ub in vitro and in cells. Crystallographic analysis shows that it blocks the ZnF pocket where Ub engages. Conditional expression of this DARPin reversibly impairs infection by IAV and Zika virus; moreover, SGs and aggresomes are downregulated. These results validate the HDAC6 ZnF as an attractive target for drug discovery

    Disrupting the HDAC6-ubiquitin interaction impairs infection by influenza and Zika virus and cellular stress pathways

    Full text link
    The deacetylase HDAC6 has tandem catalytic domains and a zinc finger domain (ZnF) binding ubiquitin (Ub). While the catalytic domain has an antiviral effect, the ZnF facilitates influenza A virus (IAV) infection and cellular stress responses. By recruiting Ub via the ZnF, HDAC6 promotes the formation of aggresomes and stress granules (SGs), dynamic structures associated with pathologies such as neurodegeneration. IAV subverts the aggresome/HDAC6 pathway to facilitate capsid uncoating during early infection. To target this pathway, we generate designed ankyrin repeat proteins (DARPins) binding the ZnF; one of these prevents interaction with Ub in vitro and in cells. Crystallographic analysis shows that it blocks the ZnF pocket where Ub engages. Conditional expression of this DARPin reversibly impairs infection by IAV and Zika virus; moreover, SGs and aggresomes are downregulated. These results validate the HDAC6 ZnF as an attractive target for drug discovery

    The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype.

    Get PDF
    Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance

    The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA. 1 phenotype

    Get PDF
    Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance

    Modulation of the unfolded protein response pathway as an antiviral approach in airway epithelial cells.

    No full text
    INTRODUCTION Rhinovirus (RV) infection is a major cause of cystic fibrosis (CF) lung morbidity with limited therapeutic options. Various diseases involving chronic inflammatory response and infection are associated with endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response (UPR), an adaptive response to maintain cellular homeostasis. Recent evidence suggests impaired ER stress response in CF airway epithelial cells, this might be a reason for recurrent viral infection in CF. Therefore, assuming that ER stress inducing drugs have antiviral properties, we evaluated the activation of the UPR by selected ER stress inducers as an approach to control virus replication in the CF bronchial epithelium. METHODS We assessed the levels of UPR markers, namely the glucose-regulated protein 78 (Grp78) and the C/EBP homologous protein (CHOP), in primary CF and control bronchial epithelial cells and in a CF and control bronchial epithelial cell line before and after infection with RV. The cells were also pretreated with ER stress-inducing drugs and RV replication and shedding was measured by quantitative RT-PCR and by a TCID assay, respectively. Cell death was assessed by a lactate dehydrogenate (LDH) activity test in supernatants. RESULTS We observed a significantly impaired induction of Grp78 and CHOP in CF compare to control cells following RV infection. The ER stress response could be significantly induced in CF cells by pharmacological ER stress inducers Brefeldin A, Tunicamycin, and Thapsigargin. The chemical induction of the UPR pathway prior to RV infection of CF and control cells reduced viral replication and shedding by up to two orders of magnitude and protected cells from RV-induced cell death. CONCLUSION RV infection causes an impaired activation of the UPR in CF cells. Rescue of the ER stress response by chemical ER stress inducers reduced significantly RV replication in CF cells. Thus, pharmacological modulation of the UPR might represent a strategy to control respiratory virus replication in the CF bronchial epithelium

    SARS-CoV-2 can infect and propagate in human placenta explants.

    No full text
    The ongoing SARS-CoV-2 pandemic continues to lead to high morbidity and mortality. During pregnancy, severe maternal and neonatal outcomes and placental pathological changes have been described. We evaluate SARS-CoV-2 infection at the maternal-fetal interface using precision-cut slices (PCSs) of human placenta. Remarkably, exposure of placenta PCSs to SARS-CoV-2 leads to a full replication cycle with infectious virus release. Moreover, the susceptibility of placental tissue to SARS-CoV-2 replication relates to the expression levels of ACE2. Viral proteins and/or viral RNA are detected in syncytiotrophoblasts, cytotrophoblasts, villous stroma, and possibly Hofbauer cells. While SARS-CoV-2 infection of placenta PCSs does not cause a detectable cytotoxicity or a pro-inflammatory cytokine response, an upregulation of one order of magnitude of interferon type III transcripts is measured. In conclusion, our data demonstrate the capacity of SARS-CoV-2 to infect and propagate in human placenta and constitute a basis for further investigation of SARS-CoV-2 biology at the maternal-fetal interface

    Disrupting the HDAC6-ubiquitin interaction impairs infection by influenza and Zika virus and cellular stress pathways

    No full text
    The deacetylase HDAC6 has tandem catalytic domains and a zinc finger domain (ZnF) binding ubiquitin (Ub). While the catalytic domain has an antiviral effect, the ZnF facilitates influenza A virus (IAV) infection and cellular stress responses. By recruiting Ub via the ZnF, HDAC6 promotes the formation of aggresomes and stress granules (SGs), dynamic structures associated with pathologies such as neurodegeneration. IAV subverts the aggresome/HDAC6 pathway to facilitate capsid uncoating during early infection. To target this pathway, we generate designed ankyrin repeat proteins (DARPins) binding the ZnF; one of these prevents interaction with Ub in vitro and in cells. Crystallographic analysis shows that it blocks the ZnF pocket where Ub engages. Conditional expression of this DARPin reversibly impairs infection by IAV and Zika virus; moreover, SGs and aggresomes are downregulated. These results validate the HDAC6 ZnF as an attractive target for drug discovery.ISSN:2666-3864ISSN:2211-124
    corecore