1,804 research outputs found

    In vitro glucuronidation of kaempferol and quercetin by human UGT-1A9 microsomes

    Get PDF
    AbstractFlavonoids are important polyphenolic substances with widespread occurrence in plants and therefore in the human diet. Although considerable work has been done on the pharmacology of flavonoids, the understanding of their metabolism is still incomplete. In this work, the in vitro glucuronidation of the common dietary flavonoids quercetin and kaempferol by human UDP-glucuronosyltransferase microsomes (UGT-1A9) was investigated using HPLC and LC–MS. The two flavonoids were extensively metabolised by this enzyme with four monoglucuronides of quercetin and two of kaempferol being detected after incubation. The presence of a quercetin monoglucuronide in the urine of a volunteer after consumption of Ginkgo biloba tablets was demonstrated

    The Energy Density of "Wound" Fields in a Toroidal Universe

    Full text link
    The observational limits on the present energy density of the Universe allow for a component that redshifts like 1/a21/a^2 and can contribute significantly to the total. We show that a possible origin for such a contribution is that the universe has a toroidal topology with "wound" scalar fields around its cycles.Comment: 11 pages, 1figur

    Scalar perturbation spectra from warm inflation

    Full text link
    We present a numerical integration of the cosmological scalar perturbation equations in warm inflation. The initial conditions are provided by a discussion of the thermal fluctuations of an inflaton field and thermal radiation using a combination of thermal field theory and thermodynamics. The perturbation equations include the effects of a damping coefficient Γ\Gamma and a thermodynamic potential VV. We give an analytic expression for the spectral index of scalar fluctuations in terms of a new slow-roll parameter constructed from Γ\Gamma. A series of toy models, inspired by spontaneous symmetry breaking and a known form of the damping coefficient, lead to a spectrum with ns>1n_s>1 on large scales and ns<1n_s<1 on small scales.Comment: 12 pages, 5 figures, RevTeX 4, revised with extra figure

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.

    Lemaitre-Tolman-Bondi model and accelerating expansion

    Full text link
    I discuss the spherically symmetric but inhomogeneous Lemaitre-Tolman- Bondi (LTB) metric, which provides an exact toy model for an inhomogeneous universe. Since we observe light rays from the past light cone, not the expansion of the universe, spatial variation in matter density and Hubble rate can have the same effect on redshift as acceleration in a perfectly homogeneous universe. As a consequence, a simple spatial variation in the Hubble rate can account for the distant supernova data in a dust universe without any dark energy. I also review various attempts towards a semirealistic description of the universe based on the LTB model.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy. 17 pages, 3 figure

    The effect of bone choice on quantification of mineralization in broiler chickens up to 6 weeks of age

    Get PDF
    An experiment was conducted to assess the most appropriate bone type for measuring bone mineralization in male broiler chicks up to 42 d. A total of 72 male broilers were raised in 0.64 m2 pens on a litter floor. The study design included 2 dietary treatments (Control and Low) containing differing levels of total phosphorus (7.8 and 4.4 g/kg for Control and Low diets respectively) and calcium (22.7 and 13.1 g/kg for Control and Low diets respectively) with each fed to 6 replicate pens of 6 birds. Each wk, 6 birds per diet were euthanized and leg bones removed to measure ash percentage. Foot, toe, tibia, and femur ash were compared using the mean of both legs from each bird, via t-tests to separate Control and Low diets. At the end of wk 1, diets could not be separated using any of the bone ash measures. From wk 2 to wk 5, both tibia and foot ash differentiated between the Control and Low diets, and tibia continued to show significant differences between the diets into wk 6. Femur ash did not show any dietary differences until wk 3, but then showed significant differences between the diets until wk 6. Toe ash only differentiated between diets at wk 2, and variation both within and between birds was high, particularly with younger birds. These results suggest that bird age has implications when choosing a bone for assessing possible differences in dietary phosphorus and calcium uptake. Femur ash may be more appropriate for showing differences in broilers aged 6 wk and older. Foot ash provides a comparable alternative to tibia ash in birds aged 2 to 5 wk of age, providing a labor- and time-saving alternative

    Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space

    Full text link
    Stability analysis of the Bianchi type I universe in pure gravity theory is studied in details. We first derive the non-redundant field equation of the system by introducing the generalized Bianchi type I metric. This non-redundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect to anisotropic perturbations. Implications to the choice of physical theories are discussed in details in this paper.Comment: 5 pages, some comment adde

    Observational Constraints on Chaplygin Quartessence: Background Results

    Full text link
    We derive the constraints set by several experiments on the quartessence Chaplygin model (QCM). In this scenario, a single fluid component drives the Universe from a nonrelativistic matter-dominated phase to an accelerated expansion phase behaving, first, like dark matter and in a more recent epoch like dark energy. We consider current data from SNIa experiments, statistics of gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in galaxy clusters. We investigate the constraints from this data set on flat Chaplygin quartessence cosmologies. The observables considered here are dependent essentially on the background geometry, and not on the specific form of the QCM fluctuations. We obtain the confidence region on the two parameters of the model from a combined analysis of all the above tests. We find that the best-fit occurs close to the Λ\LambdaCDM limit (α=0\alpha=0). The standard Chaplygin quartessence (α=1\alpha=1) is also allowed by the data, but only at the ∌2σ\sim2\sigma level.Comment: Replaced to match the published version, references update
    • 

    corecore