11 research outputs found
Efeitos da manobra de compressão e descompressão toråcica nos volumes pulmonares, capnografia e oximetria de pulso em pacientes submetidos à ventilação mecùnica
The aims of this study were to evaluate whether there are changes in lung volumes, capnography, pulse oximetry and hemodynamic parameters associated with manual chest compression-decompression maneuver (MCCD) in patients undergoing mechanical ventilation (MV). Method: A prospective study of 65 patients undergoing to MV after 24 hours. All patients received bronchial hygiene maneuvers and after 30 minutes they were submitted to ten repetitions of the MCCD during 10 consecutive respiratory cycles in the right hemithorax and than in the left hemithorax. The data were collected before the application of the maneuver and after 1, 5, 10, 15, 20, 25, 30, 35 and 40 minutes following application of the maneuver. There were statistical significant (p<0.0001) improvements in the following parameters after MCCD maneuver during all phases of data collection until 40 minutes: inspiratory tidal volume (baseline: 458.2±132.1 ml; post 1 min: 557.3±139.1; post 40 min: 574.4±151), minute volume (baseline: 7.0±2.7 L/min; post 1 min: 8.7±3.3; post 40 min: 8.8±3.8), and pulse oximetry (baseline: 97.4±2.2%; post 1 min: 97.9±1,8; post 40 min: 98.2±1.6; p<0.05). There was a reduction in CO2 expired (baseline: 35.1±9.0 mmHg; post 1 min: 31.5±8.2; post 40 min: 31.5±8.29; p<0.0001). There was no statically significant changes in heart rate (baseline: 94.5±20.5 mmHg; post 1 min: 94.7±20.5; post 40 min: 94.92±20.20; p=1) and mean arterial pressure (baseline: 91.2±19.1 bpm; post 1 min: 89.5±17.7; post 40 min: 89.01±16.88; p=0.99). The variables were presented in terms of means and standard deviations. The MCCD maneuver had positive effects by increasing lung volume and pulse oximetry and reducing CO2 expired, without promoting hemodynamic changes in patients undergoing mechanical ventilation. Trial registration RBR-268hqh16
Continuous positive airway pressure increases inspiratory capacity of COPD patients
Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Methods: Twentyâone stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5âmin at 4, 7 and 11âcmH2O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2âcmH2O was conducted. For each patient, a âbest CPAPâ level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10âmin followed by spirometry. Results: Following application of the âbest CPAPâ, the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159âmL (95% CI: 80â237âmL) and the mean change in SVC was 240âmL (95% CI: 97â386âmL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216âmL (95% CI: 94â337âmL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. Conclusions: The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema13338739
Continuous positive airway pressure increases inspiratory capacity of COPD patients
Background and objective: Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Methods: Twenty-one stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5 min at 4, 7 and 11 cmH(2)O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2 cmH(2)O was conducted. For each patient, a `best CPAP` level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10 min followed by spirometry. Results: Following application of the `best CPAP`, the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159 mL (95% CI: 80-237 mL) and the mean change in SVC was 240 mL (95% CI: 97-386 mL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216 mL (95% CI: 94-337 mL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. Conclusions: The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema.13338739
Continuous positive airway pressure increases inspiratory capacity of COPD patients
Background and objective: Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Methods: Twenty-one stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5 min at 4, 7 and 11 cmH(2)O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2 cmH(2)O was conducted. For each patient, a `best CPAP` level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10 min followed by spirometry. Results: Following application of the `best CPAP`, the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159 mL (95% CI: 80-237 mL) and the mean change in SVC was 240 mL (95% CI: 97-386 mL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216 mL (95% CI: 94-337 mL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. Conclusions: The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema
[influence Of The Respiratory Physiotherapy On Intracranial Pressure In Severe Head Trauma Patients].
To evaluate influence of the respiratory physiotherapy on intracranial pressure (ICP) in patients with severe head trauma. Thirty five patients with severe head trauma were included in the study. The patients were divided into three groups: ICP 0-10, 11-20 and 21-30 mmHg. The following variables were measured: ICP and mean arterial pressure. Cerebral perfusion pressure was calculated as the difference between mean arterial and intracranial pressure. Endotracheal aspiration increased ICP in all patients. The mean arterial pressure didn't change and cerebral perfusion pressure decreased, but remaining normal value. Respiratory physiotherapy maneuvers can be safely applied in patients with severe head trauma with ICP below 30 mmHg. More attention should be taken during endotracheal aspiration.63110-