37,793 research outputs found
Resistive MSGC with double layered electrodes
The first successful attempts to optimize the electric field in Resistive
Microstrip Gas Chamber (RMSGC) using additional field shaping strips located
inside the detector substrate are described.Comment: Presented at 13th RD51 Collaboration meeting, CERN, Febr. 201
Further developments and tests of microstrip gas counters with resistive electrodes
We present results from further tests of Microstrip Gas Counters (MSGCs) with
resistive electrodes. The maim advantage of this detector is that it is
spark-protected: in contrast to "classical" MSGCs with metallic electrodes,
sparks in this new detector do not destroy its electrodes. As a consequence the
MSGC with resistive electrodes is more reliable in operation which may open new
avenues in applications. One of them which is under investigation now is the
use of Resistive electrodes MSGC (R-MSGC) as photodetector in some particular
designs of noble liquid dark matter detectors.Comment: Presented at the RD-51 mini-week at CERN, January 17, 201
First Tests of Gaseous Detectors Made of a Resistive Mesh
We describe here various detectors designs: GEM type, MICROMEGAStype,
PPACtype as well as cascaded detectors made of a resistive mesh manufactured
from a resistive Kapton foil, (20 microns thick, resistivity a few MOhm per
square) by a laser drilling technique. As in any other micropattern detectors
the maximum achievable gas gain of these detectors is restricted by the Raether
limit, however, the resistive mesh makes them and the front end electronics
fully spark protected. This approach could be an alternative or complimentary
to the ongoing efforts in developing MICROMEGAS and GEMs with resistive anode
readout plates and can be especially beneficial in the case of micropattern
detectors combined with a micropixel-type integrated front end electronic
An improved design of spark-protected microstrip gas counters (R-MSGC)
We have developed microstrip gas counters manufactured on standard printed
circuit board and having the following features: resistive cathode strips, thin
(10 micron) metallic anode strips and electrodes protected against surface
discharges by a Coverlay layer at their edges. These features allow the
detector to operate at gas gains as high as can be achieve with the best
microstrip gas counters manufactured on glass substrates. We believe that after
further developments this type of detectors can compete in some applications
with other micropattern detectors, for example MICROMEGAS.Comment: Presented at the 7th RD51 Collaboration meeting, CERN, April 201
The mechanism for the electrooxidation of procarbazine pharmaceutical preparation in alkaline media and its mathematical description
The mechanism for the electrooxidation of procarbazine in alkaline media has been proposed. The process is realized completely on the electrode surface and is adsorption-controlled. The oscillatory behavior in this case is more probable, than for neutral media and may be caused by influences of electrochemical oxidation and salt dissolution from the electrode surface
- …