111 research outputs found
Effect of quark-mass variation on big bang nucleosynthesis
We calculate the effect of variation in the light-current quark mass, ,
on standard big bang nucleosynthesis. A change in at during the era of
nucleosynthesis affects nuclear reaction rates, and hence primordial
abundances, via changes the binding energies of light nuclei. It is found that
a relative variation of provides better
agreement between observed primordial abundances and those predicted by theory.
This is largely due to resolution of the existing discrepancies for 7Li.
However this method ignores possible changes in the position of resonances in
nuclear reactions. The predicted 7Li abundance has a strong dependence on the
cross-section of the resonant reactions 3He(d,p)4He and t(d,n)4He. We show that
changes in at the time of BBN could shift the position of these
resonances away from the Gamow window and lead to an increased production of
7Li, exacerbating the lithium problem
Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase
In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNgamma), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that DeltacydA mutants were hypersusceptible to the low pH encountered in IFNgamma-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs
Antimatter from the cosmological baryogenesis and the anisotropies and polarization of the CMB radiation
We discuss the hypotheses that cosmological baryon asymmetry and entropy were
produced in the early Universe by phase transition of the scalar fields in the
framework of spontaneous baryogenesis scenario. We show that annihilation of
the matter-antimatter clouds during the cosmological hydrogen recombination
could distort of the CMB anisotropies and polarization by delay of the
recombination. After recombination the annihilation of the antibaryonic clouds
(ABC) and baryonic matter can produce peak-like reionization at the high
redshifts before formation of quasars and early galaxy formation. We discuss
the constraints on the parameters of spontaneous baryogenesis scenario by the
recent WMAP CMB anisotropy and polarization data and on possible manifestation
of the antimatter clouds in the upcoming PLANCK data.Comment: PRD in press with minor change
Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering
We present a detailed analytical study of ultra-relativistic neutrinos in
cosmological perturbation theory and of the observable signatures of
inhomogeneities in the cosmic neutrino background. We note that a modification
of perturbation variables that removes all the time derivatives of scalar
gravitational potentials from the dynamical equations simplifies their solution
notably. The used perturbations of particle number per coordinate, not proper,
volume are generally constant on superhorizon scales. In real space an
analytical analysis can be extended beyond fluids to neutrinos.
The faster cosmological expansion due to the neutrino background changes the
acoustic and damping angular scales of the cosmic microwave background (CMB).
But we find that equivalent changes can be produced by varying other standard
parameters, including the primordial helium abundance. The low-l integrated
Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of
neutrino perturbations suppresses the CMB acoustic peaks for the multipoles
with l>~200 while it enhances the amplitude of matter fluctuations on these
scales. In addition, the perturbations of relativistic neutrinos generate a
*unique phase shift* of the CMB acoustic oscillations that for adiabatic
initial conditions cannot be caused by any other standard physics. The origin
of the shift is traced to neutrino free-streaming velocity exceeding the sound
speed of the photon-baryon plasma. We find that from a high resolution, low
noise instrument such as CMBPOL the effective number of light neutrino species
can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on
the constraints on the helium abundance.Comment: 38 pages, 7 figures. Version accepted for publication in PR
Leptogenesis and Neutrino Oscillations Within A Predictive G(224)/SO(10)-Framework
A framework based on an effective symmetry that is either G(224)= SU(2)_L x
SU(2)_R xSU(4)^c or SO(10) has been proposed (a few years ago) that
successfully describes the masses and mixings of all fermions including
neutrinos, with seven predictions, in good accord with the data. Baryogenesis
via leptogenesis is considered within this framework by allowing for natural
phases (~ 1/20-1/2) in the entries of the Dirac and Majorana mass-matrices. It
is shown that the framework leads quite naturally, for both thermal as well as
non-thermal leptogenesis, to the desired magnitude for the baryon asymmetry.
This result is obtained in full accord with the observed features of the
atmospheric and solar neutrino oscillations, as well as with those of the quark
and charged lepton masses and mixings, and the gravitino-constraint. Hereby one
obtains a unified description of fermion masses, neutrino oscillations and
baryogenesis (via leptogenesis) within a single predictive framework.Comment: Efficiency factor updated, some clarifications and new references
added. 19 page
Primordial Nucleosynthesis Constraints on Z' Properties
In models involving new TeV-scale Z' gauge bosons, the new U(1)' symmetry
often prevents the generation of Majorana masses needed for a conventional
neutrino seesaw, leading to three superweakly interacting ``right-handed''
neutrinos nu_R, the Dirac partners of the ordinary neutrinos. These can be
produced prior to big bang nucleosynthesis by the Z' interactions, leading to a
faster expansion rate and too much ^4He. We quantify the constraints on the Z'
properties from nucleosynthesis for Z' couplings motivated by a class of E_6
models parametrized by an angle theta_E6. The rate for the annihilation of
three approximately massless right-handed neutrinos into other particle pairs
through the Z' channel is calculated. The decoupling temperature, which is
higher than that of ordinary left-handed neutrinos due to the large Z' mass, is
evaluated, and the equivalent number of new doublet neutrinos Delta N_nu is
obtained numerically as a function of the Z' mass and couplings for a variety
of assumptions concerning the Z-Z' mixing angle and the quark-hadron transition
temperature T_c. Except near the values of theta_E6 for which the Z' decouples
from the right-handed neutrinos, the Z' mass and mixing constraints from
nucleosynthesis are much more stringent than the existing laboratory limits
from searches for direct production or from precision electroweak data, and are
comparable to the ranges that may ultimately be probed at proposed colliders.
For the case T_c = 150 MeV with the theoretically favored range of Z-Z'
mixings, Delta N_nu 4.3 TeV for any value of theta_E6. Larger
mixing or larger T_c often lead to unacceptably large Delta N_nu except near
the nu_R decoupling limit.Comment: 22 pages, 5 figures; two additional references adde
Stringent Constraints on Cosmological Neutrino-Antineutrino Asymmetries from Synchronized Flavor Transformation
We assess a mechanism which can transform neutrino-antineutrino asymmetries
between flavors in the early universe, and confirm that such transformation is
unavoidable in the near bi-maximal framework emerging for the neutrino mixing
matrix. We show that the process is a standard Mikheyev-Smirnov-Wolfenstein
flavor transformation dictated by a synchronization of momentum states. We also
show that flavor ``equilibration'' is a special feature of maximal mixing, and
carefully examine new constraints placed on neutrino asymmetries. In
particular, the big bang nucleosynthesis limit on electron neutrino degeneracy
xi_e < 0.04 does not apply directly to all flavors, yet confirmation of the
large-mixing-angle solution to the solar neutrino problem will eliminate the
possibility of degenerate big bang nucleosynthesis.Comment: 11 pages, 6 figures; minor changes to match PRD versio
Leptogenesis and low energy observables in left-right symmetric models
In the context of left-right symmetric models we study the connection of
leptogenesis and low energy parameters such as neutrinoless double beta decay
and leptonic CP violation. Upon imposition of a unitarity constraint, the
neutrino parameters are significantly restricted and the Majorana phases are
determined within a narrow range, depending on the kind of solar solution. One
of the Majorana phases gets determined to a good accuracy and thereby the
second phase can be probed from the results of neutrinoless double beta decay
experiments. We examine the contributions of the solar and atmospheric mass
squared differences to the asymmetry and find that in general the solar scale
dominates. In order to let the atmospheric scale dominate, some finetuning
between one of the Majorana phases and the Dirac CP phase is required. In this
case, one of the Majorana phases is determined by the amount of CP violation in
oscillation experiments.Comment: 18 pages, 6 figures. Matches version to appear in PR
Hierarchical Neutrino Mass Matrices, CP violation and Leptogenesis
In this work we study examples of hierarchical neutrino mass matrices
inspired by family symmetries, compatible with experiments on neutrino
oscillations, and for which there is a connection among the low energy CP
violation phase associated to neutrino oscillations, the phases appearing in
the amplitude of neutrinoless double beta decay, and the phases relevant for
leptogenesis. In particular, we determine the predictions from a texture based
on an underlying SU(3) family symmetry together with a GUT symmetry, and a
strong hierarchy for the masses of the heavy right handed Majorana masses. We
also give some examples of inverted hierarchies of neutrino masses, which may
be motivated in the context of U(1) family symmetries.Comment: 34 pages. Replaced with published version -typos, corrections and
references adde
Neutrino Propagation in a Strongly Magnetized Medium
We derive general expressions at the one-loop level for the coefficients of
the covariant structure of the neutrino self-energy in the presence of a
constant magnetic field. The neutrino energy spectrum and index of refraction
are obtained for neutral and charged media in the strong-field limit () using the lowest Landau level
approximation. The results found within the lowest Landau level approximation
are numerically validated, summing in all Landau levels, for strong and weakly-strong fields. The neutrino energy in
leading order of the Fermi coupling constant is expressed as the sum of three
terms: a kinetic-energy term, a term of interaction between the magnetic field
and an induced neutrino magnetic moment, and a rest-energy term. The leading
radiative correction to the kinetic-energy term depends linearly on the
magnetic field strength and is independent of the chemical potential. The other
two terms are only present in a charged medium. For strong and weakly-strong
fields, it is found that the field-dependent correction to the neutrino energy
in a neutral medium is much larger than the thermal one. Possible applications
to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference
- …