71 research outputs found

    Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants

    Get PDF
    The use of spinal implants for spine fusion has been steadily increasing to avoid the risks of complications and donor site morbidity involved when using autologous bone. A variety of fusion cages are clinically available, with different shapes and chemical compositions. However, detailed information about their surface properties and the effects of such properties on osteogenesis is lacking in the literature. Here we evaluate the role of surface properties for spinal implant applications, covering some of the key biological processes that occur around an implant and focusing on the role of surface properties, specifically the surface structure, on osseointegration, drawing examples from other implantology fields when required. Our findings revealed that surface properties such as microroughness and nanostructures can directly affect early cell behavior and long-term osseointegration. Microroughness has been well established in the literature to have a beneficial effect on osseointegration of implants. In the case of the role of nanostructures, the number of reports is increasing and most studies reveal a positive effect from the nanostructures alone and a synergistic effect when combined with microrough surfaces. Long-term clinical results are nevertheless necessary to establish the full implications of surface nanomodificationsThe use of spinal implants for spine fusion has been steadily increasing to avoid the risks of complications and donor site morbidity involved when using autologous bone. A variety of fusion cages are clinically available, with different shapes and chemical compositions. However, detailed information about their surface properties and the effects of such properties on osteogenesis is lacking in the literature. Here we evaluate the role of surface properties for spinal implant applications, covering some of the key biological processes that occur around an implant and focusing on the role of surface properties, specifically the surface structure, on osseointegration, drawing examples from other implantology fields when required. Our findings revealed that surface properties such as microroughness and nanostructures can directly affect early cell behavior and long-term osseointegration. Microroughness has been well established in the literature to have a beneficial effect on osseointegration of implants. In the case of the role of nanostructures, the number of reports is increasing and most studies reveal a positive effect from the nanostructures alone and a synergistic effect when combined with microrough surfaces. Long-term clinical results are nevertheless necessary to establish the full implications of surface nanomodification

    Amelogenin Peptide Extract Increases Differentiation and Angiogenic and Local Factor Production and Inhibits Apoptosis in Human Osteoblasts

    Get PDF
    Enamel matrix derivative (EMD), a decellularized porcine extracellular matrix (ECM), is used clinically in periodontal tissue regeneration. Amelogenin, EMD’s principal component, spontaneously assembles into nanospheres in vivo, forming an ECM complex that releases proteolytically cleaved peptides. However, the role of amelogenin or amelogenin peptides in mediating osteoblast response to EMD is not clear. Human MG63 osteoblast-like cells or normal human osteoblasts were treated with recombinant human amelogenin or a 5 kDa tyrosine-rich amelogenin peptide (TRAP) isolated from EMD and the effect on osteogenesis, local factor production, and apoptosis assessed. Treated MG63 cells increased alkaline phosphatase specific activity and levels of osteocalcin, osteoprotegerin, prostaglandin E2, and active/latent TGF-β1, an effect sensitive to the effector and concentration. Primary osteoblasts exhibited similar, but less robust, effects. TRAP-rich 5 kDa peptides yielded more mineralization than rhAmelogenin in osteoblasts in vitro. Both amelogenin and 5 kDa peptides protected MG63s from chelerythrine-induced apoptosis. The data suggest that the 5 kDa TRAP-rich sequence is an active amelogenin peptide that regulates osteoblast differentiation and local factor production and prevents osteoblast apoptosis

    Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli

    Get PDF
    Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffnesschondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process

    Impaired Bone Formation in Pdia3 Deficient Mice

    Get PDF
    1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3) mediates 1α,25(OH)2D3initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/− heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality.Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/− mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/− mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/− mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/− heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH)2D3’s actions in regulating skeletal development

    Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential

    Get PDF
    Ideal outcomes in the field of tissue engineering and regenerative medicine involve biomaterials that can enhance cell differentiation and production of local factors for natural tissue regeneration without the use of systemic drugs. Biomaterials typically used in tissue engineering applications include polymeric scaffolds that mimic the three-dimensional structural environment of the native tissue, but these are often functionalized with proteins or small peptides to improve their biological performance. For bone applications, titanium implants, or more appropriately the TiO2 passive oxide layer formed on their surface, have been shown to enhance osteoblast differentiation in vitro and to promote osseointegration in vivo. In this study we evaluated the effect on osteoblast differentiation of pure TiO2 nanofiber meshes with different surface microroughness and nanofiber diameters, prepared by the electrospinning method. MG63 cells were seeded on TiO2 meshes, and cell number, differentiation markers and local factor production were analyzed. The results showed that cells grew throughout the entire surfaces and with similar morphology in all groups. Cell number was sensitive to surface microroughness, whereas cell differentiation and local factor production was regulated by both surface roughness and nanofiber diameter. These results indicate that scaffold structural cues alone can be used to drive cell differentiation and create an osteogenic environment without the use of exogenous factorsIdeal outcomes in the field of tissue engineering and regenerative medicine involve biomaterials that can enhance cell differentiation and production of local factors for natural tissue regeneration without the use of systemic drugs. Biomaterials typically used in tissue engineering applications include polymeric scaffolds that mimic the three-dimensional structural environment of the native tissue, but these are often functionalized with proteins or small peptides to improve their biological performance. For bone applications, titanium implants, or more appropriately the TiO2 passive oxide layer formed on their surface, have been shown to enhance osteoblast differentiation in vitro and to promote osseointegration in vivo. In this study we evaluated the effect on osteoblast differentiation of pure TiO2 nanofiber meshes with different surface microroughness and nanofiber diameters, prepared by the electrospinning method. MG63 cells were seeded on TiO2 meshes, and cell number, differentiation markers and local factor production were analyzed. The results showed that cells grew throughout the entire surfaces and with similar morphology in all groups. Cell number was sensitive to surface microroughness, whereas cell differentiation and local factor production was regulated by both surface roughness and nanofiber diameter. These results indicate that scaffold structural cues alone can be used to drive cell differentiation and create an osteogenic environment without the use of exogenous factor

    Electrical Polarization of Titanium Surfacesfor the Enhancement of Osteoblast Differentiation

    Get PDF
    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. Bioelectromagnetics © 2013 Wiley Periodicals, IncElectrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. Bioelectromagnetics © 2013 Wiley Periodicals, In

    The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation

    Get PDF
    Titanium (Ti) osseointegration is critical for the success of dental and orthopedic implants. Previous studies have shown that surface roughness at the micro- and submicro-scales promotes osseointegration by enhancing osteoblast differentiation and local factor production. Only relatively recently have the effects of nanoscale roughness on cell response been considered. The aim of the present study was to develop a simple and scalable surface modification treatment that introduces nanoscale features to the surfaces of Ti substrates without greatly affecting other surface features, and to determine the effects of such superimposed nano-features on the differentiation and local factor production of osteoblasts. A simple oxidation treatment was developed for generating controlled nanoscale topographies on Ti surfaces, while retaining the starting micro-/submicro-scale roughness. Such nano-modified surfaces also possessed similar elemental compositions, and exhibited similar contact angles, as the original surfaces, but possessed a different surface crystal structure. MG63 cells were seeded on machined (PT), nano-modified PT (NMPT), sandblasted/acid-etched (SLA), and nano-modified SLA (NMSLA) Ti disks. The results suggested that the introduction of such nanoscale structures in combination with micro-/submicro-scale roughness improves osteoblast differentiation and local factor production, which, in turn, indicates the potential for improved implant osseointegration in vivoTitanium (Ti) osseointegration is critical for the success of dental and orthopedic implants. Previous studies have shown that surface roughness at the micro- and submicro-scales promotes osseointegration by enhancing osteoblast differentiation and local factor production. Only relatively recently have the effects of nanoscale roughness on cell response been considered. The aim of the present study was to develop a simple and scalable surface modification treatment that introduces nanoscale features to the surfaces of Ti substrates without greatly affecting other surface features, and to determine the effects of such superimposed nano-features on the differentiation and local factor production of osteoblasts. A simple oxidation treatment was developed for generating controlled nanoscale topographies on Ti surfaces, while retaining the starting micro-/submicro-scale roughness. Such nano-modified surfaces also possessed similar elemental compositions, and exhibited similar contact angles, as the original surfaces, but possessed a different surface crystal structure. MG63 cells were seeded on machined (PT), nano-modified PT (NMPT), sandblasted/acid-etched (SLA), and nano-modified SLA (NMSLA) Ti disks. The results suggested that the introduction of such nanoscale structures in combination with micro-/submicro-scale roughness improves osteoblast differentiation and local factor production, which, in turn, indicates the potential for improved implant osseointegration in viv

    Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titaniumealuminumevanadium alloy surfaces

    Get PDF
    Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications.Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications

    Role of a2b1 integrins in mediating cell shape on microtextured titanium surfaces

    Get PDF
    Surface microroughness plays an important role in determining osteoblast behavior on titanium. Previous studies have shown that osteoblast differentiation on microtextured titanium substrates is dependent on alpha-2 beta-1 (a2b1) integrin signaling. This study used focused ion beam milling and scanning electron microscopy, combined with three-dimensional image reconstruction, to investigate early interactions of individual cells with their substrate and the role of integrin a2b1 in determining cell shape. MG63 osteoblast-like cells on sand blasted/acid etched (SLA) Ti surfaces after 3 days of culturing indicated decreased cell number, increased cell differentiation, and increased expression of mRNA levels for a1, a2, aV, and b1 integrin subunits compared to cells on smooth Ti (PT) surfaces. a2 or b1 silenced cells exhibited increased cell number and decreased differentiation on SLA compared to wild-type cells. Wild-type cells on SLA possessed an elongated morphology with reduced cell area, increased cell thickness, and more apparent contact points. Cells on PT exhibited greater spreading and were relatively flat. Silenced cells possessed a morphology and phenotype similar to wild-type cells grown on PT. These observations indicate that surface microroughness affects cell response via a2b1 integrin signaling, resulting in a cell shape that promotes osteoblastic differentiation. VC 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 564–573, 2015.Surface microroughness plays an important role in determining osteoblast behavior on titanium. Previous studies have shown that osteoblast differentiation on microtextured titanium substrates is dependent on alpha-2 beta-1 (a2b1) integrin signaling. This study used focused ion beam milling and scanning electron microscopy, combined with three-dimensional image reconstruction, to investigate early interactions of individual cells with their substrate and the role of integrin a2b1 in determining cell shape. MG63 osteoblast-like cells on sand blasted/acid etched (SLA) Ti surfaces after 3 days of culturing indicated decreased cell number, increased cell differentiation, and increased expression of mRNA levels for a1, a2, aV, and b1 integrin subunits compared to cells on smooth Ti (PT) surfaces. a2 or b1 silenced cells exhibited increased cell number and decreased differentiation on SLA compared to wild-type cells. Wild-type cells on SLA possessed an elongated morphology with reduced cell area, increased cell thickness, and more apparent contact points. Cells on PT exhibited greater spreading and were relatively flat. Silenced cells possessed a morphology and phenotype similar to wild-type cells grown on PT. These observations indicate that surface microroughness affects cell response via a2b1 integrin signaling, resulting in a cell shape that promotes osteoblastic differentiation. VC 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 564–573, 2015
    • …
    corecore