2 research outputs found

    Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake

    No full text
    In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water body with high concentrations of methane, ferrous iron, and manganese and low concentrations of sulfates and sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms of nitrogen decreased in summer compared to winter, likely due to a phytoplankton bloom. The decomposition of the bulk of the organic matter occurs under microaerophilic/anaerobic conditions of the chemocline and is accompanied by the accumulation of nitrogen in the form of N-NH4 in the monimolimnion. We revealed a strong relationship between methane and nitrogen cycles in the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied from 9 to 13 μM throughout the water column. This fact is rare for meromictic lakes, where nitrate concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers. We hypothesize, in accord with available data for other stratified lakes that under conditions of high concentrations of manganese and ammonium at the boundary of redox conditions and below, anaerobic nitrification with the formation of nitrate occurs. Overall, most of the organic matter in Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other cycles of elements

    Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands

    Get PDF
    Permafrost thaw in continental lowlands produces large number of thermokarst (thaw) lakes, which act as a major regulator of carbon (C) storage in sediments and C emission in the atmosphere. Here we studied thaw lakes of the NE European permafrost peatlands - shallow water bodies located within frozen peat bogs and receiving the majority of their water input from lateral (surface) runoff. We also conducted mesocosm experiments via interacting lake waters with frozen peat and dominant ground vegetation - lichen and moss. There was a systematic decrease in concentrations of dissolved C, CO2, nutrients and metals with an increase in lake size, corresponding to temporal evolution of the water body and thermokarst development. We hypothesized that ground vegetation and frozen peat provide the majority of C, nutrients and inorganic solutes in the water column of these lakes, and that microbial processing of terrestrial organic matter controls the pattern of CO2 and nutrient concentrations in thermokarst lakes. Substrate mass-normalized C, nutrient (N, P, K), major and trace metal release was maximal in moss mesocosms. After first 16 h of reaction, the pCO2 increased ten-fold in mesocosms with moss and lichen; this increase was much less pronounced in experiments with permafrost peat. Overall, moss and lichen were the dominant factors controlling the enrichment of the lake water in organic C, nutrients, and trace metals and rising the CO2 concentration. The global significance of obtained results is that the changes in ground vegetation, rather than mere frozen peat thawing, may exert the primary control on C, major and trace element balance in aquatic ecosystems of tundra peatlands under climate warming scenario
    corecore