6 research outputs found

    Topological transition in disordered planar matching: combinatorial arcs expansion

    Full text link
    In this paper, we investigate analytically the properties of the disordered Bernoulli model of planar matching. This model is characterized by a topological phase transition, yielding complete planar matching solutions only above a critical density threshold. We develop a combinatorial procedure of arcs expansion that explicitly takes into account the contribution of short arcs, and allows to obtain an accurate analytical estimation of the critical value by reducing the global constrained problem to a set of local ones. As an application to a toy representation of the RNA secondary structures, we suggest generalized models that incorporate a one-to-one correspondence between the contact matrix and the RNA-type sequence, thus giving sense to the notion of effective non-integer alphabets.Comment: 28 pages, 6 figures, published versio

    New phase transition in random planar diagrams and RNA-type matching

    Full text link
    We study the planar matching problem, defined by a symmetric random matrix with independent identically distributed entries, taking values 0 and 1. We show that the existence of a perfect planar matching structure is possible only above a certain critical density, pcp_{c}, of allowed contacts (i.e. of '1'). Using a formulation of the problem in terms of Dyck paths and a matrix model of planar contact structures, we provide an analytical estimation for the value of the transition point, pcp_{c}, in the thermodynamic limit. This estimation is close to the critical value, pc≈0.379p_{c} \approx 0.379, obtained in numerical simulations based on an exact dynamical programming algorithm. We characterize the corresponding critical behavior of the model and discuss the relation of the perfect-imperfect matching transition to the known molten-glass transition in the context of random RNA secondary structure's formation. In particular, we provide strong evidence supporting the conjecture that the molten-glass transition at T=0 occurs at pcp_{c}.Comment: 8 pages, 6 figures (we have added the new fig.4
    corecore