11 research outputs found

    THE SEMANTIC STRUCTURE OF LANDSCAPE TERMS IN GERMAN FOLK TEXTS (A CASE STUDY OF FAIRY TALES, PROVERBS AND SAYINGS)

    No full text
    German folk landscape lexis, its functioning and text components' influence are studied in the aspect of interaction of some factors, such as a key role of denotative components while conceptualizing landscape's objects and their material characteristics; folk genre's purpose while actualizing its connotative features of social space; the influence of text units (actualizators) and their semantics on 'expansion' of meanings in landscape term structures. Due to the analysis of functional features of these words, two main features of the space have been determined – representation of landscape's objects and their material characteristics (size, length, quantity, material, stuff) and realization of their social features ('safe/unsafe', 'unavailable/available', 'useless/useful', etc.). The dominance of the material component in the semantic structure of landscape terms is noted in the designations of mountainous terrain. The social characteristics are presented with subjective interpretation of individual properties and elements of the relief. The conditions of interaction between the members and the landscape contexts are disclosed in the analysis of phrases in which the social characteristics of the complexes express meanings ('size', 'unavailable', 'safe', etc.). The study shows that folk texts of different genres (fairy tales, proverbs and sayings) is a valuable source of lexical material, as they reflect the stable interactions between connotative components and the semantics of fairy tales texts, proverbs and sayings. Thus, they should be taken into consideration while translating German folk texts to Russian language

    Probing the Role of a Conserved Phenylalanine in the Active Site of Thiocyanate Dehydrogenase

    No full text
    Copper-containing enzymes catalyze a broad spectrum of redox reactions. Thiocyanate dehydrogenase (TcDH) from Thioalkalivibrio paradoxus Arh1 enables the bacterium to use thiocyanate as a unique source of energy and nitrogen. Oxidation of thiocyanate takes place in the trinuclear copper center of TcDH with peculiar organization. Despite the TcDH crystal structure being established, a role of some residues in the enzyme active site has yet to be obscured. F436 residue is located in the enzyme active site and conserved among a number of TcDH homologs, however, its role in the copper center formation or the catalytic process is still not clear. To address this question, a mutant form of the enzyme with F436Q substitution (TcDHF436Q) was obtained, biochemically characterized, and its crystal structure was determined. The TcDHF436Q had an unaltered protein fold but did not possess enzymatic activity, whereas it contained all three copper ions, according to ICP-MS data. The structural data showed that the F436Q substitution resulted in a disturbance of hydrophobic interactions within the active site crucial for a correct transition between open/closed forms of the enzyme–substrate channel. Thus, we demonstrated that F436 does not participate in copper ion binding, but rather possesses a structural role in the TcDH active site

    Probing the Role of a Conserved Phenylalanine in the Active Site of Thiocyanate Dehydrogenase

    No full text
    Copper-containing enzymes catalyze a broad spectrum of redox reactions. Thiocyanate dehydrogenase (TcDH) from Thioalkalivibrio paradoxus Arh1 enables the bacterium to use thiocyanate as a unique source of energy and nitrogen. Oxidation of thiocyanate takes place in the trinuclear copper center of TcDH with peculiar organization. Despite the TcDH crystal structure being established, a role of some residues in the enzyme active site has yet to be obscured. F436 residue is located in the enzyme active site and conserved among a number of TcDH homologs, however, its role in the copper center formation or the catalytic process is still not clear. To address this question, a mutant form of the enzyme with F436Q substitution (TcDHF436Q) was obtained, biochemically characterized, and its crystal structure was determined. The TcDHF436Q had an unaltered protein fold but did not possess enzymatic activity, whereas it contained all three copper ions, according to ICP-MS data. The structural data showed that the F436Q substitution resulted in a disturbance of hydrophobic interactions within the active site crucial for a correct transition between open/closed forms of the enzyme–substrate channel. Thus, we demonstrated that F436 does not participate in copper ion binding, but rather possesses a structural role in the TcDH active site

    Proteomic dataset: Profiling of cultivated Echerichia coli isolates from Crohn's disease patients and healthy individuals

    No full text
    One of the dysbioses often observed in Crohn's disease (CD) patients is an increased abundance of Escherichia coli (10–100 fold compared to healthy individuals) (Gevers et al., 2014). The data reported is a large-scale proteome profile for E. coli isolates collected from CD patients and healthy individuals. 43 isolates were achieved from 30 CD patients (17 male, 12 female, median age 30) and 19 isolates from 7 healthy individuals (7 male, median age 19). Isolates were cultivated on LB medium at aerobic conditions up to medium log phase. Protein extraction was performed with sodium deoxycholate (DCNa) and urea, alcylation with tris(2-carboxyethyl)phosphine and iodacetamide. Protein trypsinolysis was performed as described in (Matyushkina et al., 2016). Total cell proteomes were analysed by shotgun proteomics with HPLC-MS/MS on a maXis qTOF mass-spectrometer. The data including HPLC-MS/MS raw files and exported Mascot search results was deposited to the PRIDE repository project accession: PXD010920, project https://doi.org/10.6019/PXD010920. Keywords: E. coli, Proteome, Crohn's disease, HPLC-MS/M

    Unusual Cytochrome c552 from Thioalkalivibrio paradoxus: Solution NMR Structure and Interaction with Thiocyanate Dehydrogenase

    No full text
    The search of a putative physiological electron acceptor for thiocyanate dehydrogenase (TcDH) newly discovered in the thiocyanate-oxidizing bacteria Thioalkalivibrio paradoxus revealed an unusually large, single-heme cytochrome c (CytC552), which was co-purified with TcDH from the periplasm. Recombinant CytC552, produced in Escherichia coli as a mature protein without a signal peptide, has spectral properties similar to the endogenous protein and serves as an in vitro electron acceptor in the TcDH-catalyzed reaction. The CytC552 structure determined by NMR spectroscopy reveals significant differences compared to those of the typical class I bacterial cytochromes c: a high solvent accessible surface area for the heme group and so-called “intrinsically disordered” nature of the histidine-rich N- and C-terminal regions. Comparison of the signal splitting in the heteronuclear NMR spectra of oxidized, reduced, and TcDH-bound CytC552 reveals the heme axial methionine fluxionality. The TcDH binding site on the CytC552 surface was mapped using NMR chemical shift perturbations. Putative TcDH-CytC552 complexes were reconstructed by the information-driven docking approach and used for the analysis of effective electron transfer pathways. The best pathway includes the electron hopping through His528 and Tyr164 of TcDH, and His83 of CytC552 to the heme group in accordance with pH-dependence of TcDH activity with CytC552

    Unusual Cytochrome c552 from Thioalkalivibrio paradoxus: Solution NMR Structure and Interaction with Thiocyanate Dehydrogenase

    No full text
    The search of a putative physiological electron acceptor for thiocyanate dehydrogenase (TcDH) newly discovered in the thiocyanate-oxidizing bacteria Thioalkalivibrio paradoxus revealed an unusually large, single-heme cytochrome c (CytC552), which was co-purified with TcDH from the periplasm. Recombinant CytC552, produced in Escherichia coli as a mature protein without a signal peptide, has spectral properties similar to the endogenous protein and serves as an in vitro electron acceptor in the TcDH-catalyzed reaction. The CytC552 structure determined by NMR spectroscopy reveals significant differences compared to those of the typical class I bacterial cytochromes c: a high solvent accessible surface area for the heme group and so-called “intrinsically disordered” nature of the histidine-rich N- and C-terminal regions. Comparison of the signal splitting in the heteronuclear NMR spectra of oxidized, reduced, and TcDH-bound CytC552 reveals the heme axial methionine fluxionality. The TcDH binding site on the CytC552 surface was mapped using NMR chemical shift perturbations. Putative TcDH-CytC552 complexes were reconstructed by the information-driven docking approach and used for the analysis of effective electron transfer pathways. The best pathway includes the electron hopping through His528 and Tyr164 of TcDH, and His83 of CytC552 to the heme group in accordance with pH-dependence of TcDH activity with CytC552

    FGCaMP7, an Improved Version of Fungi-Based Ratiometric Calcium Indicator for In Vivo Visualization of Neuronal Activity

    No full text
    Genetically encoded calcium indicators (GECIs) have become a widespread tool for the visualization of neuronal activity. As compared to popular GCaMP GECIs, the FGCaMP indicator benefits from calmodulin and M13-peptide from the fungi Aspergillus niger and Aspergillus fumigatus, which prevent its interaction with the intracellular environment. However, FGCaMP exhibits a two-phase fluorescence behavior with the variation of calcium ion concentration, has moderate sensitivity in neurons (as compared to the GCaMP6s indicator), and has not been fully characterized in vitro and in vivo. To address these limitations, we developed an enhanced version of FGCaMP, called FGCaMP7. FGCaMP7 preserves the ratiometric phenotype of FGCaMP, with a 3.1-fold larger ratiometric dynamic range in vitro. FGCaMP7 demonstrates 2.7- and 8.7-fold greater photostability compared to mEGFP and mTagBFP2 fluorescent proteins in vitro, respectively. The ratiometric response of FGCaMP7 is 1.6- and 1.4-fold higher, compared to the intensiometric response of GCaMP6s, in non-stimulated and stimulated neuronal cultures, respectively. We reveal the inertness of FGCaMP7 to the intracellular environment of HeLa cells using its truncated version with a deleted M13-like peptide; in contrast to the similarly truncated variant of GCaMP6s. We characterize the crystal structure of the parental FGCaMP indicator. Finally, we test the in vivo performance of FGCaMP7 in mouse brain using a two-photon microscope and an NVista miniscope; and in zebrafish using two-color ratiometric confocal imaging

    Novel Genetically Encoded Bright Positive Calcium Indicator NCaMP7 Based on the mNeonGreen Fluorescent Protein

    No full text
    Green fluorescent genetically encoded calcium indicators (GECIs) are the most popular tool for visualization of calcium dynamics in vivo. However, most of them are based on the EGFP protein and have similar molecular brightnesses. The NTnC indicator, which is composed of the mNeonGreen fluorescent protein with the insertion of troponin C, has higher brightness as compared to EGFP-based GECIs, but shows a limited inverted response with an ΔF/F of 1. By insertion of a calmodulin/M13-peptide pair into the mNeonGreen protein, we developed a green GECI called NCaMP7. In vitro, NCaMP7 showed positive response with an ΔF/F of 27 and high affinity (Kd of 125 nM) to calcium ions. NCaMP7 demonstrated a 1.7-fold higher brightness and similar calcium-association/dissociation dynamics compared to the standard GCaMP6s GECI in vitro. According to fluorescence recovery after photobleaching (FRAP) experiments, the NCaMP7 design partially prevented interactions of NCaMP7 with the intracellular environment. The NCaMP7 crystal structure was obtained at 1.75 Å resolution to uncover the molecular basis of its calcium ions sensitivity. The NCaMP7 indicator retained a high and fast response when expressed in cultured HeLa and neuronal cells. Finally, we successfully utilized the NCaMP7 indicator for in vivo visualization of grating-evoked and place-dependent neuronal activity in the visual cortex and the hippocampus of mice using a two-photon microscope and an NVista miniscope, respectively

    Large-scale assessment of pros and cons of autopsy-derived or tumor-matched tissues as the norms for gene expression analysis in cancers

    No full text
    Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived “healthy” normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min – 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact “differential” expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice
    corecore