7 research outputs found

    Universal Pulse Shape Scaling Function and Exponents: A Critical Test for Avalanche Models applied to Barkhausen Noise

    Full text link
    In order to test if the universal aspects of Barkhausen noise in magnetic materials can be predicted from recent variants of the non-equilibrium zero temperature Random Field Ising Model (RFIM), we perform a quantitative study of the universal scaling function derived from the Barkhausen pulse shape in simulations and experiment. Through data collapses and scaling relations we determine the critical exponents Ļ„\tau and 1/ĻƒĪ½z1/\sigma\nu z in both simulation and experiment. Although we find agreement in the critical exponents, we find differences between theoretical and experimental pulse shape scaling functions as well as between different experiments.Comment: 19 pages (in preprint format), 5 figures, 1 tabl

    Disorder-Induced Critical Phenomena in Hysteresis: Numerical Scaling in Three and Higher Dimensions

    Full text link
    We present numerical simulations of avalanches and critical phenomena associated with hysteresis loops, modeled using the zero-temperature random-field Ising model. We study the transition between smooth hysteresis loops and loops with a sharp jump in the magnetization, as the disorder in our model is decreased. In a large region near the critical point, we find scaling and critical phenomena, which are well described by the results of an epsilon expansion about six dimensions. We present the results of simulations in 3, 4, and 5 dimensions, with systems with up to a billion spins (1000^3).Comment: Condensed and updated version of cond-mat/9609072,``Disorder-Induced Critical Phenomena in Hysteresis: A Numerical Scaling Analysis'

    International conference Kosta P. Manojlović and the Idea of Slavic and Balkan Cultural Unification (1918-1941)

    Get PDF
    This conference is organised within the project Serbian musical identities within local and global frameworks: traditions, changes, challenges (No. 177004) financed by the Serbian Ministry of Education, Science and Technological Development. It is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia as well as the Department of Fine Arts and Music SASA
    corecore