12 research outputs found

    Effect of Heavy Metals on the Germination of Wheat Seeds: Enzymatic Assay

    Get PDF
    Stress caused by heavy metals is a major problem which affects agricultural productivity and, implicitly, human health. Natural flora presents differences of tolerance to heavy metals. Some plants grow well in a soil enriched with heavy metals, while others cannot develop in such conditions. This study investigates the effect of heavy metals on plant viability at molecular level and draws attention to the danger of the widespread use of toxic compounds

    Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity

    No full text
    Although they are widely used as insecticides, acaricides and fungicides in the agriculture or as raw materials in the dye industry, dinitrophenols (DNPs) are extremely noxious, death cases having been registered. These compounds produce cataracts, lower leucocyte levels, disturb the general metabolism and can cause cancer. It is also assumed that DNPs hinder the proton translocation through the mitochondrial inner membrane and therefore inhibit oxidative phosphorylation. Their fluorescence quenching properties can help understand and explain their toxicity. Fluorescence quenching of tryptophan was tested using different dinitrophenols such as 2,4-dinitrophenol (2,4-DNP), 4,6-dinitro-orthocresol (DNOC), 2-[(2,4-dinitrophenyl)amino]acetic acid (GlyDNP), 2-(1-methyl-heptyl)-4.6-dinitrophenyl crotonate (Karathan), 2-amino-5-[(1-((carboxymethyl)amino)-3-((2,4-dinitrophenyl)thio)-1-oxopropan-2-yl)amino]-5-oxopentanoic acid (SDN GSH), 2,4-dinitroanisole (2,4-DNA) and 2,4-dinitrobenzoic acid (2,4-DNB). 2,4-DNP and DNOC showed the highest tryptophan fluorescence quenching constant values, these being also the most toxic compounds. The electronic chemical potential value of the most stable complex of 2,4-DNP-with tryptophan is higher than the values of the electronic chemical potentials of complexes corresponding to the derivatives

    Best practices in the field of specific risk evaluation of pyrotechnic entertainment articles subject to legal and illegal market surveillance

    No full text
    The field of pyrotechnic articles is very popular and developed, and as a result, the influx of pyrotechnic articles on the market is abundant. However, it should be noted that in addition to compliant products, which meet the applicable essential safety requirements covered by Directive no. 2013/29 / EU, there are also products on the market that can present a significant level of danger when used, handled, transported or stored. Market surveillance authorities frequently find non-compliant products such as pyrotechnic articles offered to the public, some on the legal market, others traded illegally. The establishment of presumptive risks related to pyrotechnic articles can be achieved by applying documented and accredited procedures at national and European level by specialized laboratories, one of these being found within INSEMEX. Technical-scientific expertise activity aims to verify the level of security for products considered suspicious. We have an international collaboration with European authorities, and at the national level, requests for products such as pyrotechnic articles are sent for expertise by the police, the prosecutor’s office or the courts. It was found that most products considered “suspicious” had serious deficiencies that could lead to major risks, and those traded illegally lead to considerable economic losses

    Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability

    No full text
    Hypoxic cells have been linked to genetic instability and tumor progression. However, little is known about the exact relationship between DNA repair and genetic instability in hypoxic cells. We therefore tested whether the sensing and repair of DNA double-strand breaks (DNA-dsbs) is altered in irradiated cells kept under continual oxic, hypoxic or anoxic conditions. Synchronized G0–G1 human fibroblasts were irradiated (0–10 Gy) after initial gassing with 0% O2 (anoxia), 0.2% O2 (hypoxia) or 21% O2 (oxia) for 16 hours. The response of phosphorylated histone H2AX (γ-H2AX), phosphorylated ataxia telangiectasia mutated [ATM(Ser1981)], and the p53 binding protein 1 (53BP1) was quantified by intranuclear DNA repair foci and western blotting. At 24 hours following DNA damage, residual γ-H2AX, ATM(Ser1981) and 53BP1 foci were observed in hypoxic cells. This increase in residual DNA-dsbs under hypoxic conditions was confirmed using neutral comet assays. Clonogenic survival was also reduced in chronically hypoxic cells, which is consistent with the observation of elevated G1-associated residual DNA-dsbs. We also observed an increase in the frequency of chromosomal aberrations in chronically hypoxic cells. We conclude that DNA repair under continued hypoxia leads to decreased repair of G1-associated DNA-dsbs, resulting in increased chromosomal instability. Our findings suggest that aberrant DNA-dsb repair under hypoxia is a potential factor in hypoxia-mediated genetic instability.</jats:p

    New Ecological Solutions Involved in the Cleaning of a 19th Century Icon

    No full text
    Cleaning of old icons requires special attention to selecting the processes and systems compatible with the chemical nature and adhesions of the deposits, to not affect the polychrome layer or their conservation status. The study was carried out on a 19th century icon made in fat tempera, on a thin layer of preparation that presents fouling. The cleaning was done using extracts obtained from sage, St. John&rsquo;s Wort, and, respectively, licorice root teas obtained through different extraction processes: microwave, ultrasound, boiling, and room temperature, respectively. The washing capacity of the new system used was analyzed by analytical methods of assessing the cleaning degree: UV-Vis reflection, reflective colorimetry type CIE L*a*b*, co-assisted with optical microscopy and scanning electrone microscopy (SEM-EDX)

    Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens

    No full text
    Microgreens are an excellent source of health-maintaining compounds, and the accumulation of these compounds in plant tissues may be stimulated by exogenous stimuli. While light quality effects on green basil microgreens are known, the present paper aims at improving the quality of acyanic (green) and cyanic (red) basil microgreens with different ratios of LED blue and red illumination. Growth, assimilatory and anthocyanin pigments, chlorophyll fluorescence, total phenolic, flavonoids, selected phenolic acid contents and antioxidant activity were assessed in microgreens grown for 17 days. Growth of microgreens was enhanced with predominantly blue illumination, larger cotyledon area and higher fresh mass. The same treatment elevated chlorophyll a and anthocyanin pigments contents. Colored light treatments decreased chlorophyll fluorescence ΦPSII values significantly in the green cultivar. Stimulation of phenolic synthesis and free radical scavenging activity were improved by predominantly red light in the green cultivar (up to 1.87 fold) and by predominantly blue light in the red cultivar (up to 1.73 fold). Rosmarinic and gallic acid synthesis was higher (up to 15- and 4-fold, respectively, compared to white treatment) in predominantly blue illumination. Red and blue LED ratios can be tailored to induce superior growth and phenolic contents in both red and green basil microgreens, as a convenient tool for producing higher quality foods

    Innovative methodological tool for occupational risk quantification

    No full text
    This paper presents research in the field of estimating and assessing occupational risks, in order to secure the activities carried out in the presence of specific hazards of industrial work systems, and is based on an in-depth knowledge of interdisciplinary notions in various fields related to systems security engineering. The innovative methodological tool highlights a way to quantify the phenomenon of manifestation of hazards specific to work processes that generate occupational risks with impact, both on the human component and at the level of other components specific to work systems, which significantly reduces the inherent subjectivity in assessing the risks caused by the human factor
    corecore