7 research outputs found

    Spatiotemporal Step Patterns during Crystal Growth in a Transport-Controlled System

    No full text

    Carbon Nanotubes: Solution for the Therapeutic Delivery of siRNA?

    No full text
    Carbon nanotubes have many unique physical and chemical properties that are being widely explored for potential applications in biomedicine especially as transporters of drugs, proteins, DNA and RNA into cells. Specifically, single-walled carbon nanotubes (SWCNT) have been shown to deliver siRNA to tumors in vivo. The low toxicity, the excellent membrane penetration ability, the protection afforded against blood breakdown of the siRNA payload and the good biological activity seen in vivo suggests that SWCNT may become universal transfection vehicles for siRNA and other RNAs for therapeutic applications. This paper will introduce a short review of a number of therapeutic applications for carbon nanotubes and provide recent data suggesting SWCNT are an excellent option for the delivery of siRNA clinically

    Compartmentalization of the Outer Hair Cell Demonstrated by Slow Diffusion in the Extracisternal Space

    No full text
    In the outer hair cell (OHC), the extracisternal space (ECiS) is a conduit and reservoir of the molecular and ionic substrates of the lateral wall, including those necessary for electromotility. To determine the mechanisms through which molecules are transported in the ECiS of the OHC, we selectively imaged the time-dependent spatial distribution of fluorescent molecules in a <100 nm layer near the cell/glass interface of the recording chamber after their photolytic activation in a diffraction-limited volume. The effective diffusion coefficient was calculated using the analytical solution of the diffusion equation. It was found that diffusion in the ECiS is isotropic and not affected by depolarizing the OHC. Compared with free solution, the diffusion of 10 kDa dextran was slowed down in both the ECiS and the axial core by a factor of 4.6 and 1.6, respectively
    corecore