2,546 research outputs found

    From Doubled Chern-Simons-Maxwell Lattice Gauge Theory to Extensions of the Toric Code

    Get PDF
    We regularize compact and non-compact Abelian Chern-Simons-Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R\mathbb{R}, each local Hilbert space is analogous to the one of a charged "particle" moving in the link-pair group space R2\mathbb{R}^2 in a constant "magnetic" background field. In the compact case, the link-pair group space is a torus U(1)2U(1)^2 threaded by kk units of quantized "magnetic" flux, with kk being the level of the Chern-Simons theory. The holonomies of the torus U(1)2U(1)^2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1)U(1) to Z(k)\mathbb{Z}(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern-Simons limit of a large "photon" mass, this results in a Z(k)\mathbb{Z}(k)-symmetric variant of Kitaev's toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle 2Ď€k\frac{2 \pi}{k}. Non-Abelian U(k)U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.Comment: 38 pages, 4 figure

    Reducing Global Warming and Adapting to Climate Change: The Potential of Organic Agriculture

    Get PDF
    Climate change mitigation is urgent and adaptation to climate change is crucial, particularly in agriculture, where food security is at stake. Agriculture, currently responsible for 20-30% of global greenhouse gas emissions counting direct and indirect agricultural emissions), can however contribute to both climate change mitigation and adaptation. The main mitigation potential lies in the capacity of agricultural soils to sequester CO2 through building organic matter. This potential can be realized by employing sustainable agricultural practices, such as those commonly found within organic farming systems. Examples of these practices are the use of organic fertilizers and crop rotations including legumes leys and cover crops. Mitigation is also achieved in organic agriculture through the avoidance of open biomass burning and the avoidance of synthetic fertilizers and the related production emissions from fossil fuels. Common organic practices also contribute to adaptation. Building soil organic matter increases water retention capacity, and creates more stabile, fertile soils, thus reducing vulnerability to drought, extreme precipitation events, floods and water logging. Adaptation is further supported by increased agro-ecosystem diversity of organic farms, due to reduced nitrogen inputs and the absence of chemical pesticides. The high diversity together with the lower input costs of organic agriculture is key in reducing production risks associated with extreme weather events. All these advantageous practices are not exclusive to organic agriculture. However, they are core parts of the organic production system, in contrast to most non-organic agriculture, where they play a minor role only. Mitigation in agriculture cannot be restricted to the agricultural sector alone, though. Consumer behaviour strongly influences agricultural production systems, and thus their mitigation potential. Significant factors are meat consumption and food wastage. Any discussion on mitigation climate change in agriculture needs to address the entire food chain and needs to be linked to general sustainable development strategies. The main challenges to climate change mitigation and adaptation in organic agriculture and agriculture in general concern a)the understanding of some of the basic processes, such as the interaction of N2O emissions and soil carbon sequestration, contributions of roots to soil carbon sequestration and the life-cycle emissions of organic fertilizers such as compost; b) approaches for emissions accounting that adequately represent agricultural production systems with multiple and diverse outputs and that also encompass ecosystem services; c) the identification and implementation of most adequate policy frameworks for supporting mitigation and adaptation in agriculture, i.e: not putting systemic approaches at a disadvantage due to difficulties in the quantification of emissions, and in their allocation to single products; d) how to assure that the current focus on mitigation does not lead to neglect of the other sustainability aspects of agriculture, such as pesticide loads, eutrophication, acidification or soil erosion and e) the question how to address consumer behaviour and how to utilize the mitigation potential of changes in consumption patterns

    Quantum corrections from a path integral over reparametrizations

    Full text link
    We study the path integral over reparametrizations that has been proposed as an ansatz for the Wilson loops in the large-NN QCD and reproduces the area law in the classical limit of large loops. We show that a semiclassical expansion for a rectangular loop captures the L\"uscher term associated with d=26d=26 dimensions and propose a modification of the ansatz which reproduces the L\"uscher term in other dimensions, which is observed in lattice QCD. We repeat the calculation for an outstretched ellipse advocating the emergence of an analog of the L\"uscher term and verify this result by a direct computation of the determinant of the Laplace operator and the conformal anomaly

    Nucleation of quark matter bubbles in neutron stars

    Full text link
    The thermal nucleation of quark matter bubbles inside neutron stars is examined for various temperatures which the star may realistically encounter during its lifetime. It is found that for a bag constant less than a critical value, a very large part of the star will be converted into the quark phase within a fraction of a second. Depending on the equation of state for neutron star matter and strange quark matter, all or some of the outer parts of the star may subsequently be converted by a slower burning or a detonation.Comment: 13 pages, REVTeX, Phys.Rev.D (in press), IFA 93-32. 5 figures (not included) available upon request from [email protected]

    Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature

    Full text link
    We investigate systems of nature where the common physical processes diffusion and fragmentation compete. We derive a rate equation for the size distribution of fragments. The equation leads to a third order differential equation which we solve exactly in terms of Bessel functions. The stationary state is a universal Bessel distribution described by one parameter, which fits perfectly experimental data from two very different system of nature, namely, the distribution of ice crystal sizes from the Greenland ice sheet and the length distribution of alpha-helices in proteins.Comment: 4 pages, 3 figures, (minor changes

    Free-electron Model for Mesoscopic Force Fluctuations in Nanowires

    Full text link
    When two metal electrodes are separated, a nanometer sized wire (nanowire) is formed just before the contact breaks. The electrical conduction measured during this retraction process shows signs of quantized conductance in units of G_0=2e^2/h. Recent experiments show that the force acting on the wire during separation fluctuates, which has been interpreted as being due to atomic rearrangements. In this report we use a simple free electron model, for two simple geometries, and show that the electronic contribution to the force fluctuations is comparable to the experimentally found values, about 2 nN.Comment: 4 pages, 3 figures, reference correcte

    Correlator of Fundamental and Anti-symmetric Wilson Loops in AdS/CFT Correspondence

    Full text link
    We study the two circular Wilson loop correlator in which one is of anti-symmetric representation, while the other is of fundamental representation in 4-dimensional N=4{\cal N}=4 super Yang-Mills theory. This correlator has a good AdS dual, which is a system of a D5-brane and a fundamental string. We calculated the on-shell action of the string, and clarified the Gross-Ooguri transition in this correlator. Some limiting cases are also examined.Comment: 22 pages, 5 figures, v2: typos corrected, v3: final version in JHE

    Quantum Conductance in Semimetallic Bismuth Nanocontacts

    Full text link
    Electronic transport properties of bismuth nanocontacts are analyzed by means of a low temperature scanning tunneling microscope. The subquantum steps observed in the conductance versus elongation curves give evidence of atomic rearrangements in the contact. The underlying quantum nature of the conductance reveals itself through peaks in the conductance histograms. The shape of the conductance curves at 77 K is well described by a simple gliding mechanism for the contact evolution during elongation. The strikingly different behaviour at 4 K suggests a charge carrier transition from light to heavy ones as the contact cross section becomes sufficiently small.Comment: 5 pages including 4 figures. Accepted for publication in Phys. Rev. Let

    Transport coefficients for electrolytes in arbitrarily shaped nano and micro-fluidic channels

    Full text link
    We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the hydraulic and electrical transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the geometrical correction factor for the Hagen-Poiseuille part of the problem. In particular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.Comment: 13 pages including 4 figures and 1 table. Typos corrected. Accepted for NJ
    • …
    corecore