6 research outputs found
Fine Carbohydrate Structure of Dietary Resistant Glucans Governs the Structure and Function of Human Gut Microbiota
Increased dietary fiber consumption has been shown to increase human gut microbial diversity, but the mechanisms driving this effect remain unclear. One possible explanation is that microbes are able to divide metabolic labor in consumption of complex carbohydrates, which are composed of diverse glycosidic linkages that require specific cognate enzymes for degradation. However, as naturally derived fibers vary in both sugar composition and linkage structure, it is challenging to separate out the impact of each of these variables. We hypothesized that fine differences in carbohydrate linkage structure would govern microbial community structure and function independently of variation in glycosyl residue composition. To test this hypothesis, we fermented commercially available soluble resistant glucans, which are uniformly composed of glucose linked in different structural arrangements, in vitro with fecal inocula from each of three individuals. We measured metabolic outputs (pH, gas, and short-chain fatty acid production) and community structure via 16S rRNA amplicon sequencing. We determined that community metabolic outputs from identical glucans were highly individual, emerging from divergent initial microbiome structures. However, specific operational taxonomic units (OTUs) responded similarly in growth responses across individuals’ microbiota, though in context-dependent ways; these data suggested that certain taxa were more efficient in competing for some structures than others. Together, these data support the hypothesis that variation in linkage structure, independent of sugar composition, governs compositional and functional responses of microbiota
Pangenome comparison of Bacteroides fragilis genomospecies unveils genetic diversity and ecological insights
Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon, which differentiates into two genomospecies termed divisions I and II. Through a comprehensive collection of 694 B. fragilis whole genome sequences, we identify novel features distinguishing these divisions. Our study reveals a distinct geographic distribution with division I strains predominantly found in North America and division II strains in Asia. Additionally, division II strains are more frequently associated with bloodstream infections, suggesting a distinct pathogenic potential. We report differences between the two divisions in gene abundance related to metabolism, virulence, stress response, and colonization strategies. Notably, division II strains harbor more antimicrobial resistance (AMR) genes than division I strains. These findings offer new insights into the functional roles of division I and II strains, indicating specialized niches within the intestine and potential pathogenic roles in extraintestinal sites.ImportanceUnderstanding the distinct functions of microbial species in the gut microbiome is crucial for deciphering their impact on human health. Classifying division II strains as Bacteroides fragilis can lead to erroneous associations, as researchers may mistakenly attribute characteristics observed in division II strains to the more extensively studied division I B. fragilis. Our findings underscore the necessity of recognizing these divisions as separate species with distinct functions. We unveil new findings of differential gene prevalence between division I and II strains in genes associated with intestinal colonization and survival strategies, potentially influencing their role as gut commensals and their pathogenicity in extraintestinal sites. Despite the significant niche overlap and colonization patterns between these groups, our study highlights the complex dynamics that govern strain distribution and behavior, emphasizing the need for a nuanced understanding of these microorganisms
microbeMASST: A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data
microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms’ role in ecology and human health
A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data
MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms’ role in ecology and human health
Recommended from our members
Commensal bacteria promote type I interferon signaling to maintain immune tolerance in mice
Type I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses. Specifically, IFN signaling is required for commensal-induced tolerance as IFNAR1-deficient DCs display blunted IL-10 and IL-27 production in response to B. fragilis. We further establish that IFN-driven IL-27 in DCs is critical in shaping the ensuing Foxp3+ Treg via IL-27Rα signaling. Consistent with these findings, single-cell RNA sequencing of gut Tregs demonstrated that colonization with B. fragilis promotes a distinct IFN gene signature in Foxp3+ Tregs during intestinal inflammation. Altogether, our findings demonstrate a critical role of commensal-mediated immune tolerance via tonic type I IFN signaling
Recommended from our members
microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data
microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health