13 research outputs found

    Analysis of motor dysfunction in Down Syndrome reveals motor neuron degeneration

    Get PDF
    Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied-the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown. Using a panel of mouse strains with duplications of regions of mouse chromosomes orthologous to Hsa21 we show that increased dosage of small numbers of genes causes locomotor dysfunction and, moreover, that the Dyrk1a gene is required in three copies to cause the phenotype. Furthermore, we show for the first time a new DS phenotype: loss of motor neurons both in mouse models and, importantly, in humans with DS, that may contribute to locomotor dysfunction

    Molecular assembly and interactions of membrane proteins and viral glycoproteins using mass photometry

    No full text
    Integral membrane proteins (IMPs) and their interactions form the basis underlying many processes essential for life of all living organisms. Despite their pivotal importance, they are challenging to study due to the presence of a bilayer-embedded transmembrane domain requiring astute strategies to achieve solubilisation in aqueous environments. Here we present mass photometry as a novel technique to investigate IMPs and their interactions in a variety of membrane mimetic systems, uncovering the interactions underlying the bacterial outer membrane architecture. We then apply mass photometry to viral membrane glycoproteins, the HIV-1 envelope spike and SARS-CoV-2 spike, and their interactions with a soluble inhibiting protein and host cell receptor, respectively. In both cases, we describe how the oligomeric nature of the involved proteins facilitates intermolecular crosslinking, facilitating enhanced inhibition. We begin by establishing the applicability of mass photometry to measure a variety of membrane mimetic systems, including detergents, by determining the molecular weight of different IMPs in detergents, amphipols, lipid nanodiscs, and native nanodiscs. We further show the heterogeneity stemming from native membrane protein extraction with native nanodiscs, as well as the utility of mass photometry in predicting IMP functionality in different lipid nanodisc assemblies. We apply these findings to characterise the architecture and interactions between the IMP of the Gram-negative bacterial outer membrane, providing important insights into the outer membrane island formation and contributions to antibiotic resistance. Next, we focus on the interactions of the HIV-1 envelope spike glycoprotein with its natural inhibitor, banana lectin BanLec. Through careful mass photometry measurements, we determine the dynamics of this multivalent interaction, resulting in the formation of highly heterogeneous species through intermolecular crosslinking. This approach is then applied to investigate the mechanism behind SARS-CoV-2 infection. We measure the interactions between the viral spike and its human host cell receptor, ACE2, showing the importance of its dimeric nature for achieving its full neutralisation potential through spike crosslinking. This work introduced mass photometry as an important tool for membrane protein research with broad applications in protein-protein interactions as well as in characterisation of complex heterogeneous reactions important in viral infections.</p

    Lipids mediate supramolecular outer membrane protein assembly in bacteria

    Get PDF
    β Barrel outer membrane proteins (OMPs) cluster into supramolecular assemblies that give function to the outer membrane (OM) of Gram-negative bacteria. How such assemblies form is unknown. Here, through photoactivatable cross-linking into the Escherichia coli OM, coupled with simulations, and biochemical and biophysical analysis, we uncover the basis for OMP clustering in vivo. OMPs are typically surrounded by an annular shell of asymmetric lipids that mediate higher-order complexes with neighboring OMPs. OMP assemblies center on the abundant porins OmpF and OmpC, against which low-abundance monomeric β barrels, such as TonB-dependent transporters, are packed. Our study reveals OMP-lipid-OMP complexes to be the basic unit of supramolecular OMP assembly that, by extending across the entire cell surface, couples the requisite multifunctionality of the OM to its stability and impermeability

    Mass photometry of membrane proteins

    No full text
    Integral membrane proteins (IMPs) are biologically highly significant but challenging to study because they require maintaining a cellular lipid-like environment. Here, we explore the application of mass photometry (MP) to IMPs and membrane-mimetic systems at the single-particle level. We apply MP to amphipathic vehicles, such as detergents and amphipols, as well as to lipid and native nanodiscs, characterizing the particle size, sample purity, and heterogeneity. Using methods established for cryogenic electron microscopy, we eliminate detergent background, enabling high-resolution studies of membrane-protein structure and interactions. We find evidence that, when extracted from native membranes using native styrene-maleic acid nanodiscs, the potassium channel KcsA is present as a dimer of tetramers—in contrast to results obtained using detergent purification. Finally, using lipid nanodiscs, we show that MP can help distinguish between functional and non-functional nanodisc assemblies, as well as determine the critical factors for lipid nanodisc formation

    Analysis of motor dysfunction in Down Syndrome reveals motor neuron degeneration

    No full text
    Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied-the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown. Using a panel of mouse strains with duplications of regions of mouse chromosomes orthologous to Hsa21 we show that increased dosage of small numbers of genes causes locomotor dysfunction and, moreover, that the Dyrk1a gene is required in three copies to cause the phenotype. Furthermore, we show for the first time a new DS phenotype: loss of motor neurons both in mouse models and, importantly, in humans with DS, that may contribute to locomotor dysfunction

    Analysis of motor dysfunction in Down Syndrome reveals motor neuron degeneration

    Get PDF
    Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied-the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown. Using a panel of mouse strains with duplications of regions of mouse chromosomes orthologous to Hsa21 we show that increased dosage of small numbers of genes causes locomotor dysfunction and, moreover, that the Dyrk1a gene is required in three copies to cause the phenotype. Furthermore, we show for the first time a new DS phenotype: loss of motor neurons both in mouse models and, importantly, in humans with DS, that may contribute to locomotor dysfunction

    Quantitative mass imaging of single biological macromolecules

    No full text
    The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time

    Quantitative mass imaging of single biological macromolecules

    No full text
    The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time
    corecore