4 research outputs found

    Plasma Treatment of Large-Area Polymer Substrates for the Enhanced Adhesion of UV–Digital Printing

    No full text
    UV–digital printing belongs to the commonly used method for custom large-area substrate decoration. Despite low surface energy and adhesion, transparent polymer materials, such as polymethylmethacrylate (PMMA) and polycarbonate (PC), represent an ideal substrate for such purposes. The diffuse coplanar surface barrier discharge (DCSBD) in a novel compact configuration was used for substrate activation to improve ink adhesion to the polymer surface. This industrially applicable version of DCSBD was prepared, tested, and successfully implemented for the UV–digital printing process. Furthermore, wettability and surface free energy measurement, X-ray photoelectron spectroscopy, atomic force, and scanning electron microscopy evaluated the surface chemistry and morphology changes. The changes in the adhesion of the surface and of ink were analyzed by a peel-force and a crosscut test, respectively. A short plasma treatment (1–5 s) enhanced the substrate’s properties of PMMA and PC while providing the pre-treatment suitable for further in-line UV–digital printing. Furthermore, we did not observe damage of or significant change in roughness affecting the substrate’s initial transparency

    Adhesive Properties of Silicone-Coated Release Liner Paper Enhanced by Atmospheric Pressure Plasma Pre- and Post-Treatment

    No full text
    For release-liner preparation, coating stabilization of the silicone layer on base paper often requires pre- and post-treatment. In this study, we used atmospheric pressure diffuse coplanar surface barrier discharge in roll-to-roll configuration. The results of prepared coating showed that the A4 size clay-coated paper sprayed with silicone oil (0.25–0.50 mL) gradually decreased the tape peeling force (180°) with prolonged and repeated air plasma post-treatment. Best results showing increased hydrophobicity and significantly enhanced release factor of the coating were obtained after the plasma treatment in a nitrogen atmosphere. The silicone coating on the clay-coated paper reduced the reference release force from 5.5 N/cm to less than 1.5 N/cm after the repeated silicone spraying and short nitrogen plasma post-treatment. The results of X-ray photoelectron spectroscopy and scanning electron microscopy indicate silicone curing by plasma post-treatment and pore-closing of base paper without changes of the bulk material. The aging test lasting 3 months revealed the stability of the prepared coating

    Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric

    Get PDF
    Excellent adhesion of electrospun nanofiber (NF) to textile support is crucial for a broad range of their bioapplications, e.g., wound dressing development. We compared the effect of several low- and atmospheric pressure plasma modifications on the adhesion between two parts of composite—polycaprolactone (PCL) nanofibrous mat (functional part) and polypropylene (PP) spunbond fabric (support). The support fabrics were modified before electrospinning by low-pressure plasma oxygen treatment or amine plasma polymer thin film or treated by atmospheric pressure plasma slit jet (PSJ) in argon or argon/nitrogen. The adhesion was evaluated by tensile test and loop test adapted for thin NF mat measurement and the trends obtained by both tests largely agreed. Although all modifications improved the adhesion significantly (at least twice for PSJ treatments), low-pressure oxygen treatment showed to be the most effective as it strengthened adhesion by a factor of six. The adhesion improvement was ascribed to the synergic effect of high treatment homogeneity with the right ratio of surface functional groups and sufficient wettability. The low-pressure modified fabric also stayed long-term hydrophilic (ten months), even though surfaces usually return to a non-wettable state (hydrophobic recovery). In contrast to XPS, highly surface-sensitive water contact angle measurement proved suitable for monitoring subtle surface changes
    corecore