7 research outputs found

    B cell contribution to immunometabolic dysfunction and impaired immune responses in obesity

    Get PDF
    Obesity increases the risk of type 2 diabetes mellitus, cardiovascular disease, fatty liver disease, and cancer. It is also linked with more severe complications from infections, including COVID-19, and poor vaccine responses. Chronic, low-grade inflammation and associated immune perturbations play an important role in determining morbidity in people living with obesity. The contribution of B cells to immune dysregulation and meta-inflammation associated with obesity has been documented by studies over the past decade. With a focus on human studies, here we consolidate the observations demonstrating that there is altered B cell subset composition, differentiation, and function both systemically and in the adipose tissue of individuals living with obesity. Finally, we discuss the potential factors that drive B cell dysfunction in obesity and propose a model by which altered B cell subset composition in obesity underlies dysfunctional B cell responses to novel pathogens.publishersversionPeer reviewe

    Immunosuppressive Mechanisms of Regulatory B Cells

    Get PDF
    Funding Information: This work was financed by the National Agency for Research and Development ANID-Fondecyt Iniciación Grant Number 11170800. Doctoral training of AF was supported by ANID-PFCHA/National Doctoral Scholarship No 21181286. Publisher Copyright: © Copyright © 2021 Catalán, Mansilla, Ferrier, Soto, Oleinika, Aguillón and Aravena.Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.publishersversionPeer reviewe

    The Role of CD1d-Mediated Lipid Presentation by Regulatory B Cells in Invariant Natural Killer T Cell Suppression of Autoimmunity

    No full text
    Regulatory B cells (Bregs) express high levels of CD1d that presents lipid antigens to invariant natural killer T (iNKT) cells. The role of CD1d in Breg biology and the specific contribution to iNKT cell function and in suppressing inflammation remains unknown. Combining chimeric mice, cell depletion and adoptive transfer strategies, we show that CD1d lipid presentation by B cells to iNKT cells is critical for the induction of iNKT cells that down-regulate Th1 and Th17 adaptive immune responses and arthritis, whilst dispensable for Breg development. Mice lacking CD1d-expressing B cells developed exacerbated arthritis compared to wild-type mice and failed to respond to α-GalCer treatment. Absence of lipid presentation by B cells led to altered activation of iNKT cells, with disruption of regulatory pathways including those involved in metabolism and cytokine responses. Thus, we have identified a novel mechanism by which Bregs via CD1d, in an IL-10 independent manner, control and restrain excessive inflammation

    T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex

    Get PDF
    SummaryThe transcription factor T-bet directs Th1 cell differentiation, but the molecular mechanisms that underlie this lineage-specific gene regulation are not completely understood. Here, we show that T-bet acts through enhancers to allow the recruitment of Mediator and P-TEFb in the form of the super elongation complex (SEC). Th1 genes are occupied by H3K4me3 and RNA polymerase II in Th2 cells, while T-bet-mediated recruitment of P-TEFb in Th1 cells activates transcriptional elongation. P-TEFb is recruited to both genes and enhancers, where it activates enhancer RNA transcription. P-TEFb inhibition and Mediator and SEC knockdown selectively block activation of T-bet target genes, and P-TEFb inhibition abrogates Th1-associated experimental autoimmune uveitis. T-bet activity is independent of changes in NF-κB RelA and Brd4 binding, with T-bet- and NF-κB-mediated pathways instead converging to allow P-TEFb recruitment. These data provide insight into the mechanism through which lineage-specifying factors promote differentiation of alternative T cell fates

    T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex

    No full text
    The transcription factor T-bet directs Th1 cell differentiation, but the molecular mechanisms that underlie this lineage-specific gene regulation are not completely understood. Here, we show that T-bet acts through enhancers to allow the recruitment of Mediator and P-TEFb in the form of the super elongation complex (SEC). Th1 genes are occupied by H3K4me3 and RNA polymerase II in Th2 cells, while T-bet-mediated recruitment of P-TEFb in Th1 cells activates transcriptional elongation. P-TEFb is recruited to both genes and enhancers, where it activates enhancer RNA transcription. P-TEFb inhibition and Mediator and SEC knockdown selectively block activation of T-bet target genes, and P-TEFb inhibition abrogates Th1-associated experimental autoimmune uveitis. T-bet activity is independent of changes in NF-κB RelA and Brd4 binding, with T-bet- and NF-κB-mediated pathways instead converging to allow P-TEFb recruitment. These data provide insight into the mechanism through which lineage-specifying factors promote differentiation of alternative T cell fates

    Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production.

    No full text
    Regulatory B cells (Breg cells) differentiate in response to inflammation and subsequently restrain excessive immune responses via the release of interleukin-10 (IL-10). However, the precise inflammatory signals governing their differentiation remain to be elucidated. Here we show that the gut microbiota promotes the differentiation of Breg cells in the spleen as well as in the mesenteric lymph nodes. Perturbation of the gut microbiome imposed either by antibiotic treatment or by changes in the sterility of housing conditions reduces the number and function of Breg cells. Following the induction of arthritis, IL-1β and IL-6 are produced only in conventionally housed mice and both cytokines directly promote Breg cell differentiation and IL-10 production. Mice lacking IL-6 receptor (IL-6R) or IL-1 receptor 1 (IL-1R1) specifically on B cells have a reduced number of IL-10-producing B cells and develop exacerbated arthritis compared to control animals. Thus, in response to inflammatory signals induced by both the gut flora and arthritis, Breg cells increase in number and restrain excessive inflammation
    corecore