36 research outputs found

    A Hexose Transporter Homologue Controls Glucose Repression in the Methylotrophic Yeast Hansenula polymorpha

    Get PDF
    Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1 leads to a pleiotropic phenotype that includes the constitutive presence of peroxisomes and peroxisomal enzymes in glucose-grown cells. Glucose transport and repression defects in a UV-induced gcr1-2 mutant were found to result from a missense point mutation that substitutes a serine residue (Ser85) with a phenylalanine in the second predicted transmembrane segment of the Gcr1 protein. In addition to glucose, mannose and trehalose fail to repress the peroxisomal enzyme, alcohol oxidase in gcr1-2 cells. A mutant deleted for the GCR1 gene was additionally deficient in fructose repression. Ethanol, sucrose, and maltose continue to repress peroxisomes and peroxisomal enzymes normally and therefore, appear to have GCR1-independent repression mechanisms in H. polymorpha. Among proteins of the hexose transporter family of baker’s yeast, Saccharomyces cerevisiae, the amino acid sequence of the H. polymorpha Gcr1 protein shares the highest similarity with a core region of Snf3p, a putative high affinity glucose sensor. Certain features of the phenotype exhibited by gcr1 mutants suggest a regulatory role for Gcr1p in a repression pathway, along with involvement in hexose transport

    Identification of intragenic mutations in the Hansenula polymorpha PEX6 gene that affect peroxisome biogenesis and methylotrophic growth

    Get PDF
    Two interacting AAA ATPases, Pex1p and Pex6p, are indispensable for peroxisome biogenesis in different organisms. Mutations affecting corresponding genes are the most common cause of the peroxisome biogenesis disorders in humans. By UV mutagenesis of the Hansenula polymorpha pex6 mutant, deficient in peroxisome biogenesis, we isolated a conditional cold-sensitive strain with restored ability to grow in methanol medium at 37degreesC but not at 28degreesC. Sequencing of the pex6 allele revealed a point mutation in the first AAA module of the PEX6 gene that leads to substitution of a conserved amino acid residue (G737E). An additional intragenic mutation identified in the cold-sensitive pex6 allele leads to a conserved amino acid substitution in the second AAA domain (R1000G). Electron microscopic analysis revealed restored peroxisomes in methanol-induced cold-sensitive pex6 cells at both permissive and restrictive temperatures. If separated, the secondary mutation did not affect methylotrophic growth. Our data suggest that H. polymorpha Pex6p may have a complex function in peroxisome biogenesis in which identified amino acid residues are involved. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Microbiological Societies

    A Pichia pastoris VPS15 homologue is required in selective peroxisome autophagy

    Get PDF
    Methylotrophic yeasts contain large peroxisomes during growth on methanol. Upon exposure to excess glucose or ethanol these organelles are selectively degraded by autophagy, Here we describe the cloning of a Pichia pastoris gene (PpVPS15) involved ill peroxisome degradation, which is homologous to Saccharomyces cerevisiae VPS15. In methanol-grown cells of a P. pastoris VPS15 deletion strain, the levels of peroxisomal marker enzymes remained high after addition of excess glucose or ethanol. Electron microscopic studies revealed that the organelles were not taken up by vacuoles, suggesting that PpVPS15 is required at an early stage in peroxisome degradation

    Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris

    Get PDF
    We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX group

    The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy

    Get PDF
    In the methanol-utilizing yeast Hansenula polymorpha, glucose and ethanol trigger the repression of peroxisomal enzymes at the transcriptional level, and rapid and selective degradation of methanol-induced peroxisomes by means of a process termed pexophagy. In this report we demonstrate that deficiency in the putative H. polymorpha homologues of transcriptional repressors Mig1 (HpMig1 and HpMig2), as well as HpTup1, partially and differentially affects the repression of peroxisomal alcohol oxidase by sugars and ethanol. As reported earlier, deficiency in HpTup1 leads to impairment of glucose- or ethanol-induced macropexophagy. In H. polymorpha mig1mig2 double-deletion cells, macropexophagy was also substantially impaired, whereas micropexophagy became a dominant mode of autophagic degradation. Our findings suggest that homologues of the elements of the Saccharomyces cerevisiae main repression pathway have pleiotropic functions in H. polymorpha.

    Identification of Hexose Transporter-Like Sensor HXS1 and Functional Hexose Transporter HXT1 in the Methylotrophic Yeast Hansenula polymorphaâ–ż

    No full text
    We identified in the methylotrophic yeast Hansenula polymorpha (syn. Pichia angusta) a novel hexose transporter homologue gene, HXS1 (hexose sensor), involved in transcriptional regulation in response to hexoses, and a regular hexose carrier gene, HXT1 (hexose transporter). The Hxs1 protein exhibits the highest degree of primary sequence similarity to the Saccharomyces cerevisiae transporter-like glucose sensors, Snf3 and Rgt2. When heterologously overexpressed in an S. cerevisiae hexose transporter-less mutant, Hxt1, but not Hxs1, restores growth on glucose or fructose, suggesting that Hxs1 is nonfunctional as a carrier. In its native host, HXS1 is expressed at moderately low level and is required for glucose induction of the H. polymorpha functional low-affinity glucose transporter Hxt1. Similarly to other yeast sensors, one conserved amino acid substitution in the Hxs1 sequence (R203K) converts the protein into a constitutively signaling form and the C-terminal region of Hxs1 is essential for its function in hexose sensing. Hxs1 is not required for glucose repression or catabolite inactivation that involves autophagic degradation of peroxisomes. However, HXS1 deficiency leads to significantly impaired transient transcriptional repression in response to fructose, probably due to the stronger defect in transport of this hexose in the hxs1Δ deletion strain. Our combined results suggest that in the Crabtree-negative yeast H. polymorpha, the single transporter-like sensor Hxs1 mediates signaling in the hexose induction pathway, whereas the rate of hexose uptake affects the strength of catabolite repression
    corecore