8 research outputs found

    Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal

    Full text link
    Electrophoresis is a motion of charged dispersed particles relative to a fluid in a uniform electric field. The effect is widely used to separate macromolecules, to assemble colloidal structures, to transport particles in nano- and micro-fluidic devices and displays. Typically, the fluid is isotropic (for example, water) and the electrophoretic velocity is linearly proportional to the electric field. In linear electrophoresis, only a direct current (DC) field can drive the particles. An alternate current (AC) field is more desirable because it allows one to overcome problems such as electrolysis and absence of steady flows. Here we show that when the electrophoresis is performed in a nematic fluid, the effect becomes strongly non-linear with a velocity component that is quadratic in the applied voltage and has a direction that generally differs from the direction of linear velocity. The new phenomenon is caused by distortions of the LC orientation around the particle that break the fore-aft (or left-right) symmetry. The effect allows one to transport both charged and neutral particles, even when the particles themselves are perfectly symmetric (spherical), thus enabling new approaches in display technologies, colloidal assembly, separation, microfluidic and micromotor applications.Comment: 15 pages, 4 figure

    Electrically Controlled Negative Refraction in a Nematic Liquid Crystal

    No full text
    The authors demonstrate electrically controlled negative refraction at the interface between an isotropic material and a uniaxial nematic liquid crystal, in which the optic axis is designed to make a large angle with the interface. Depending on the applied voltage, the refracted beam is either on the opposite side of the interface normal as compared to the incident beam (positive refraction) or on the same side (negative refraction).</p

    Inelastic Collisions and Anisotropic Aggregation of Particles in a Nematic Collider Driven by Backflow

    No full text
    We design a nematic collider for controlled out-of-equilibrium anisotropic aggregation of spherical colloidal particles. The nematic surrounding imparts dipolar interactions among the spheres. A bidirectional backflow of the nematic liquid crystal (NLC) in a periodic electric field forces the spheres to collide with each other. The inelastic collisions are of two types, head-to-tail and head-to-head. Head-to-tail collisions of dipoles result in longitudinal aggregation while head-to-head collisions promote aggregation in the transversal direction. The frequency of head-to-head collisions is set by the impact parameter that allows one to control the resulting shape of aggregates, their anisotropy and fractal dimension
    corecore