4 research outputs found

    Investigating the retention of intermediate-mass black holes in star clusters using N-body simulations

    Get PDF
    Contrary to supermassive and stellar-mass black holes (SBHs), the existence of intermediate-mass black holes (IMBHs) with masses ranging between 10^{2-5} Msun has not yet been confirmed. The main problem in the detection is that the innermost stellar kinematics of globular clusters (GCs) or small galaxies, the possible natural loci to IMBHs, are very difficult to resolve. However, if IMBHs reside in the centre of GCs, a possibility is that they interact dynamically with their environment. A binary formed with the IMBH and a compact object of the GC would naturally lead to a prominent source of gravitational radiation, detectable with future observatories. We use N-body simulations to study the evolution of GCs containing an IMBH and calculate the gravitational radiation emitted from dynamically formed IMBH-SBH binaries and the possibility that the IMBH escapes the GC after an IMBH-SBH merger. We run for the first time direct-summation integrations of GCs with an IMBH including the dynamical evolution of the IMBH with the stellar system and relativistic effects, such as energy loss in gravitational waves (GWs) and periapsis shift, and gravitational recoil. We find in one of our models an intermediate mass-ratio inspiral (IMRI), which leads to a merger with a recoiling velocity higher than the escape velocity of the GC. The GWs emitted fall in the range of frequencies that a LISA-like observatory could detect, like the European eLISA or in mission options considered in the recent preliminary mission study conducted in China. The merger has an impact on the global dynamics of the cluster, as an important heating source is removed when the merged system leaves the GC. The detection of one IMRI would constitute a test of GR, as well as an irrefutable proof of the existence of IMBHs.Comment: Accepted for publication by A&A, minor modification

    Ultrafast Pulse Radiolysis Using a Terawatt Laser Wakefield Accelerator

    Get PDF
    We report the first ultrafast pulse radiolysis transient absorption spectroscopy measurements from the Terawatt Ultrafast High Field Facility (TUHFF) at Argonne National Laboratory. TUHFF houses a 20 TW Ti:sapphire laser system that generates 2.5 nC sub-picosecond pulses of multi-MeV electrons at 10 Hz using laser wakefield acceleration. The system has been specifically optimized for kinetic measurements in a pump-probe fashion. This requires averaging over many shots which necessitates stable, reliable generation of electron pulses. The latter were used to generate excess electrons in pulse radiolysis of liquid water and concentrated solutions of perchloric acid. The hydronium ions in the acidic solutions react with the hydrated electrons resulting in the rapid decay of the transient absorbance at 800 nm on the picosecond time scale. Time resolution of a few picoseconds has been demonstrated. The current time resolution is determined primarily by the physical dimensions of the sample and the detection sensitivity. Subpicosecond time resolution can be achieved by using thinner samples, more sensitive detection techniques and improved electron beam quality.Comment: submitted to J. Appl. Phys. 5 figures, 23 page

    Subpicosecond radiolysis by means of terawatt laser wakefield accelerator

    No full text
    This is the publisher's version, also available electronically from http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1274463A novel subpicosecond pulse radiolysis experimental system has been developed in Terawatt Ultrafast High Field Facility (TUHFF) at Argonne National Laboratory. TUHFF houses a 20 TW Ti:sapphire laser system that generates 2.5 nC sub-picosecond pulses of 4-25 MeV electrons at 10 Hz using laser wakefield acceleration. The system has been optimized for chemical studies. The subpicosecond electron pulses were used to generate hydrated electrons in pulse radiolysis of liquid water. Preliminary transient absorption spectroscopy data with picosecond resolution is presented
    corecore