71 research outputs found

    Forward Electron-Phonon Scattering and HTS

    Full text link
    Tunneling and point contact spectroscopy show clear phonon features and together with optic measurements give strong support that the electron-phonon interaction (EPI) is large in HTS oxides. Strong correlations in HTS oxides renormalize the EPI (and interaction with impurities) so that the forward scattering peak (FSP) develops for small hole doping \delta<<1. The FSP mechanism explains important properties of the normal and superconducting state.Comment: 6 pages, 5 figure

    Cosmological Neutrino Background Revisited

    Full text link
    We solve the Boltzmann equation for cosmological neutrinos around the epoch of the electron-positron annihilation in order to verify the freeze-out approximation and to compute accurately the cosmological neutrino distribution function. We find the radiation energy density to be about 0.3% higher than the one predicted by the freeze-out approximation. As a result, the spectrum of the Cosmic Microwave Background anisotropies changes by 0.3-05%, depending on the angular scale, and the amplitude of the mass fluctuations on scales below about 100 h^{-1} Mpc decreases by about 0.2-0.3%.Comment: An error is corrected, figure revised; submitted to Ap

    Band filling and interband scattering effects in MgB2_2: C vs Al doping

    Get PDF
    We argue, based on band structure calculations and Eliashberg theory, that the observed decrease of TcT_c of Al and C doped MgB2_2 samples can be understood mainly in terms of a band filling effect due to the electron doping by Al and C. A simple scaling of the electron-phonon coupling constant λ\lambda by the variation of the density of states as function of electron doping is sufficient to capture the experimentally observed behavior. Further, we also explain the long standing open question of the experimental observation of a nearly constant π\pi gap as function of doping by a compensation of the effect of band filling and interband scattering. Both effects together generate a nearly constant π\pi gap and shift the merging point of both gaps to higher doping concentrations, resolving the discrepancy between experiment and theoretical predictions based on interband scattering only.Comment: accepted by PR

    Developing a strategy for the development of small enterprises in the energy sector of the economy

    Get PDF
    As a part of the study, the problems of forming the investment strategy of energy companies were considered. Possible ways of choosing the most rational forms of investment in the assets and a comprehensive assessment of the strategy’s effectiveness were proposed. A methodology for the qualitative and quantitative assessment of the investment strategy for the development of an enterprise has been developed by analyzing the Cobb-Douglas production function. In the paper, when solving specific problems, general economic methods of analysis, probabilistic and statistical methods, the method of expert assessments, and methods of system and comparative analysis were used. The practical application of the proposed assessment methodology is considered on the example of comparing two options for the investment strategy of an enterprise operating in the field of energy processing

    Interband superconductivity: contrasts between BCS and Eliashberg theory

    Get PDF
    The newly discovered iron pnictide superconductors apparently present an unusual case of interband-channel pairing superconductivity. Here we show that, in the limit where the pairing occurs within the interband channel, several surprising effects occur quite naturally and generally: different density-of-states on the two bands lead to several unusual properties, including a gap ratio which behaves inversely to the ratio of density-of-states; the weak-coupling limit of the Eliashberg and the BCS theory, commonly taken as equivalent, in fact predict qualitatively different dependence of the Δ1/Δ2\Delta_{1}/\Delta_{2} and Δ/Tc\Delta/T_{c} ratios on coupling constants. We show analytically that these effects follow directly from the interband character of superconductivity. Our results show that in the interband-only pairing model the maximal gap ratio is N2/N1\sqrt{N_{2}/N_{1}} as strong-coupling effects act only to reduce this ratio. This suggests that if the large experimentally reported gap ratios (up to a factor 2) are correct, the pairing mechanism must include more intraband interaction than is usually assumed.Comment: 4 pages, 3 figure

    Evidence for strong electron-phonon coupling and polarons in the optical response of La_{2-x}Sr_xCuO_4

    Full text link
    The normal state optical response of La_{2-x}Sr_xCuO_4 is found to be consistent with a simple multi-component model, based on free carriers with strong electron-phonon interaction, localized polaronic states near 0.15 eV and a mid-infrared band at 0.5 eV. Normal state reflectance and absorbance of La_{1.83}Sr_{0.17}CuO_4 are investigated and their temperature dependence is explained. Both, the ac and dc response are recovered and the quasi-linear behavior of the optical scattering rate up to 3000- 4000 cm^{-1} is found to be consistent with strong electron-phonon interaction, which also accounts for the value of T_c. Although not strictly applicable in the superconducting state, our simple model accounts for the observed penetration depth and the optical response below T_c can be recovered by introducing a small amount of additional carriers. Our findings suggest that the optical response of La_{2-x}Sr_xCuO_4 could be explained both, in the normal and superconducting state, by a simple multi-fluid model with strong electron-phonon interaction if the gap symmetry and the temperature dependence of the 0.5 eV mid-infrared band are adequately taken into account.Comment: 22 pages, REVTeX, 12 figures in ps-fil

    The optical response of Ba_{1-x}K_xBiO_3: Evidence for an unusual coupling mechanism of superconductivity?

    Full text link
    We have analysed optical reflectivity data for Ba_{1-x}K_xBiO_3 in the far-infrared region using Migdal-Eliashberg theory and found it inconsistent with standard electron-phonon coupling: Whereas the superconducting state data could be explained using moderate coupling, \lambda=0.7, the normal state properties indicate \lambda \le 0.2. We have found that such behaviour could be understood using a simple model consisting of weak standard electron-phonon coupling plus weak coupling to an unspecified high energy excitation near 0.4 eV. This model is found to be in general agreement with the reflectivity data, except for the predicted superconducting gap size. The additional high energy excitation suggests that the dominant coupling mechanism in Ba_{1-x}K_xBiO_3 is not standard electron-phonon.Comment: 5 pages REVTex, 5 figures, 32 refs, accepted for publication in Phys. Rev.

    Development of Wolffia arrhiza as a Producer for Recombinant Human Granulocyte Colony-Stimulating Factor

    Get PDF
    To date, the expression of recombinant proteins in transgenic plants is becoming a powerful alternative to classical expression methods. Special efforts are directed to the development of contained cultivation systems based on cell culture or rhyzosecretion, which reliably prevents the heterologous DNA releasing into the environment. A promising object for the development of such systems is the tiny aquatic plant of Wolffia arrhiza, which can be used as a dipped culture in bioreactors. Herein we have expressed the human granulocyte colony-stimulating factor (hG-CSF) in nuclear-transformed Wolffia. The nucleotide sequence of hG-CSF was optimized for expression in Wolffia and cloned into the vector pCamGCSF downstream of double CaMV 35S promoter. Wolffia plants were successfully transformed and 34 independent transgenic lines with hG-CSF gene were obtained, PCR and Southern blot analysis confirmed the transgenic origin of these lines. Western blot analysis revealed accumulation of the target protein in 33 transgenic lines. Quantitative ELISA of protein extracts from these lines showed hG-CSF accumulation up to 35.5 mg/kg of Wolffia fresh weight (0.194% of total soluble protein). This relatively high yield holds promise for the development of Wolffia-based expression system in strictly controlled format to produce various recombinant proteins

    Thermodynamics of Two - Band Superconductors: The Case of MgB2_{2}

    Get PDF
    Thermodynamic properties of the multiband superconductor MgB2_{2} have often been described using a simple sum of the standard BCS expressions corresponding to σ\sigma- and π\pi-bands. Although, it is \textit{a priori} not clear if this approach is working always adequately, in particular in cases of strong interband scattering. Here we compare the often used approach of a sum of two independent bands using BCS-like α\alpha-model expressions for the specific heat, entropy and free energy to the solution of the full Eliashberg equations. The superconducting energy gaps, the free energy, the entropy and the heat capacity for varying interband scattering rates are calculated within the framework of two-band Eliashberg theory. We obtain good agreement between the phenomenological two-band α\alpha-model with the Eliashberg results, which delivers for the first time the theoretical verification to use the α\alpha-model as a useful tool for a reliable analysis of heat capacity data. For the thermodynamic potential and the entropy we demonstrate that only the sum over the contributions of the two bands has physical meaning.Comment: 27 pages, 10 figures, 1 table, submitted to Phys. Rev.
    • …
    corecore