26 research outputs found

    Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland

    Get PDF
    Plants are a major factor influencing methane emissions from wetlands, along with environmental parameters such as water table, temperature, pH, nutrients and soil carbon substrate. We conducted a field experiment to study how different plant species influence methane emissions from a wetland in Switzerland. The top 0.5 m of soil at this site had been removed five years earlier, leaving a substrate with very low methanogenic activity. We found a sixfold difference among plant species in their effect on methane emission rates: Molinia caerulea and Lysimachia vulgaris caused low emission rates, whereas Senecio paludosus, Carex flava, Juncus effusus and Typha latifolia caused relatively high rates. Centaurea jacea, Iris sibirica, and Carex davalliana caused intermediate rates. However, we found no effect of either plant biomass or plant functional groups – based on life form or productivity of the habitat – upon methane emission. Emissions were much lower than those usually reported in temperate wetlands, which we attribute to reduced concentrations of labile carbon following topsoil removal. Thus, unlike most wetland sites, methane production in this site was probably fuelled chiefly by root exudation from living plants and from root decay. We conclude that in most wetlands, where concentrations of labile carbon are much higher, these sources account for only a small proportion of the methane emitted. Our study confirms that plant species composition does influence methane emission from wetlands, and should be considered when developing measures to mitigate the greenhouse gas emissions

    Compositional variation in grassland plant communities

    Get PDF
    Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities

    Rocks create nitrogen hotspots and N:P heterogeneity by funnelling rain

    No full text
    We postulated that soil nutrient heterogeneity arises not only through physical and biological processes in the soil, but also through emergent rocks diverting precipitation containing nutrients to the surrounding soil. To test this idea—which we call the ‘funnelling effect’ of such rocks—we placed ion-exchange resin in small boxes beside rocks and in open soil on a pristine glacial forefield site in Switzerland, and measured the amounts of NH4 +, NO3 −, NO2 − and PO4 3− that were adsorbed. We also placed resin bags beneath PVC funnels of different sizes so that we could calibrate the natural funnelling effect of rocks. We obtained strong linear relationships between nitrogen (N) adsorbed and rain-collecting area of both rocks and funnels. Although the mean rain-collecting area of rocks was only 0.02 m2, mean N adsorption was around 10 times higher within 1 cm of rocks than further away. In contrast, phosphorus (P) was not concentrated beside rocks, so that N:P stoichiometry varied spatially. Rumex scutatus and Agrostis gigantea plants that rooted beside rocks had significantly higher foliar N concentrations than those growing further away, in line with the resin data. However, the two species showed differing responses in foliar P and N:P. We propose that R. scutatus benefits from the increased N supply by increasing its uptake of soil P, while A. gigantea is unable to do so. This study clearly demonstrates that aboveground rain-funnelling structures can produce spatial heterogeneity in N supply, thereby creating a diversity of nutritional niches for plants.ISSN:0168-2563ISSN:1573-515

    Low investment in sexual reproduction threatens plants adapted to phosphorus limitation

    No full text
    Plant species diversity in Eurasian wetlands and grasslands depends not only on productivity but also on the relative availability of nutrients, particularly of nitrogen and phosphorus. Here we show that the impacts of nitrogen:phosphorus stoichiometry on plant species richness can be explained by selected plant life-history traits, notably by plant investments in growth versus reproduction. In 599 Eurasian sites with herbaceous vegetation we examined the relationship between the local nutrient conditions and community-mean life-history traits. We found that compared with plants in nitrogen-limited communities, plants in phosphorus-limited communities invest little in sexual reproduction (for example, less investment in seed, shorter flowering period, longer lifespan) and have conservative leaf economy traits (that is, a low specific leaf area and a high leaf dry-matter content). Endangered species were more frequent in phosphorus-limited ecosystems and they too invested little in sexual reproduction. The results provide new insight into how plant adaptations to nutrient conditions can drive the distribution of plant species in natural ecosystems and can account for the vulnerability of endangered species. © 2014 Macmillan Publishers Limited

    Endangered plants persist under phosphorus limitation

    No full text
    Nitrogen enrichment is widely thought to be responsible for the loss of plant species from temperate terrestrial ecosystems. This view is based on field surveys and controlled experiments showing that species richness correlates negatively with high productivity, and nitrogen enrichment. However, as the type of nutrient limitation has never been examined on a large geographical scale the causality of these relationships is uncertain. We investigated species richness in herbaceous terrestrial ecosystems, sampled along a transect through temperate Eurasia that represented a gradient of declining levels of atmospheric nitrogen deposition—from ,50 kg ha21 yr21 in western Europe to natural background values of less than 5 kg ha21 yr21 in Siberia. Here we show that many more endangered plant species persist under phosphorus-limited than under nitrogen-limited conditions, and we conclude that enhanced phosphorus is more likely to be the cause of species loss than nitrogen enrichment. Our results highlight the need for a better understanding of the mechanisms of phosphorus enrichment, and for a stronger focus on conservation management to reduce phosphorus availabilit

    Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?

    Get PDF
    Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.This article is published as Radujković, Dajana, Erik Verbruggen, Eric W. Seabloom, Michael Bahn, Lori A. Biederman, Elizabeth T. Borer, Elizabeth H. Boughton et al. "Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?." Ecology Letters 24 (2021): 2713-2725. doi:10.1111/ele.13894. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted
    corecore