47 research outputs found

    Multicentric representation and von Neumann spectral sets

    Get PDF

    Multicentric calculus and the Riesz projection

    Get PDF
    In multicentric holomorphic calculus one represents the function ? using a new polynomial variable w=p(z)w = p(z) in such a way that when evaluated at the operator p(A)p(A) is small in norm. Here it is assumed that pp has distinct roots. In this paper we discuss two related problems, separating a compact set, such as the spectrum, into different components by a polynomial lemniscate, and then applying the calculus for computation and estimation of the Riesz spectral projection. It may then be desirable to move to using p(z)np(z)^n as a new variable and we develop the necessary modifications to incorporate the multiplicities in the roots

    Dynamics of the Volterra-type integral and differentiation operators on generalized Fock spaces

    Full text link
    [EN] Various dynamical properties of the differentiation and Volterra-type integral operators on generalized Fock spaces are studied. We show that the differentiation operator is always supercyclic on these spaces. We further characterize when it is hypercyclic, power bounded and uniformly mean ergodic. We prove that the operator satisfies the Ritt's resolvent condition if and only if it is power bounded and uniformly mean ergodic. Some similar results are obtained for the Volterra-type and Hardy integral operators.J. Bonet was partially supported by the research projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain). M. Worku is supported by ISP project, Addis Ababa University, Ethiopia.Bonet Solves, JA.; Mengestie, T.; Worku, M. (2019). Dynamics of the Volterra-type integral and differentiation operators on generalized Fock spaces. Results in Mathematics. 74(4):1-15. https://doi.org/10.1007/s00025-019-1123-7S115744Abanin, A.V., Tien, P.T.: Differentiation and integration operators on weighted Banach spaces of holomorphic functions. Math. Nachr. 290(8–9), 1144–1162 (2017)Atzmon, A., Brive, B.: Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions, Bergman spaces and related topics in complex analysis, Contemp. Math., vol. 404, Amer. Math. Soc., Providence, RI, pp. 27–39 (2006)Bayart, F., Matheron, E.: Dynamics of Linear Operators, Cambridge Tracts in Math, vol. 179. Cambridge Univ. Press, Cambridge (2009)BermĂșdez, T., Bonilla, A., Peris, A.: On hypercyclicity and supercyclicity criteria. Bull. Austral. Math. Soc. 70, 45–54 (2004)BeltrĂĄn, M.J.: Dynamics of differentiation and integration operators on weighted space of entire functions. Studia Math. 221, 35–60 (2014)BeltrĂĄn, M.J., Bonet, J., FernĂĄndez, C.: Classical operators on weighted Banach spaces of entire functions. Proc. Am. Math. Soc. 141, 4293–4303 (2013)BĂšs, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999)Bonet, J.: Dynamics of the differentiation operator on weighted spaces of entire functions. Math. Z. 26, 649–657 (2009)Bonet, J.: The spectrum of Volterra operators on weighted Banach spaces of entire functions. Q. J. Math. 66, 799–807 (2015)Bonet, J., Bonilla, A.: Chaos of the differentiation operator on weighted Banach spaces of entire functions. Complex Anal. Oper. Theory 7, 33–42 (2013)Bonet, J., Taskinen, J.: A note about Volterra operators on weighted Banach spaces of entire functions. Math. Nachr. 288, 1216–1225 (2015)Constantin, O., Persson, A.-M.: The spectrum of Volterra-type integration operators on generalized Fock spaces. Bull. Lond. Math. Soc. 47, 958–963 (2015)Constantin, O., PelĂĄez, J.-Á.: Integral operators, embedding theorems and a Littlewood–Paley formula on weighted Fock spaces. J. Geom. Anal. 26, 1109–1154 (2016)De La Rosa, M., Read, C.: A hypercyclic operator whose direct sum is not hypercyclic. J. Oper. Theory 61, 369–380 (2009)Dunford, N.: Spectral theory. I. Convergence to projections. Trans. Am. Math. Soc. 54, 185–217 (1943)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Springer, New York (2011)Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)Lyubich, Yu.: Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition. Studia Mathematica 143(2), 153–167 (1999)Mengestie, T.: A note on the differential operator on generalized Fock spaces. J. Math. Anal. Appl. 458(2), 937–948 (2018)Mengestie, T.: Spectral properties of Volterra-type integral operators on Fock–Sobolev spaces. J. Kor. Math. Soc. 54(6), 1801–1816 (2017)Mengestie, T.: On the spectrum of volterra-type integral operators on Fock–Sobolev spaces. Complex Anal. Oper. Theory 11(6), 1451–1461 (2017)Mengestie, T., Ueki, S.: Integral, differential and multiplication operators on weighted Fock spaces. Complex Anal. Oper. Theory 13, 935–95 (2019)Mengestie, T., Worku, M.: Isolated and essentially isolated Volterra-type integral operators on generalized Fock spaces. Integr. Transf. Spec. Funct. 30, 41–54 (2019)Nagy, B., Zemanek, J.A.: A resolvent condition implying power boundedness. Studia Math. 134, 143–151 (1999)Nevanlinna, O.: Convergence of iterations for linear equations. Lecture Notes in Mathematics. ETH ZĂŒrich, BirkhĂ€user, Basel (1993)Ritt, R.K.: A condition that lim⁥n→∞n−1Tn=0\lim _{n\rightarrow \infty } n^{-1}T^n =0. Proc. Am. Math. Soc. 4, 898–899 (1953)Ueki, S.: Characterization for Fock-type space via higher order derivatives and its application. Complex Anal. Oper. Theory 8, 1475–1486 (2014)Yosida, K.: Functional Analysis. Springer, Berlin (1978)Yosida, K., Kakutani, S.: Operator-theoretical treatment of Marko’s process and mean ergodic theorem. Ann. Math. 42(1), 188–228 (1941

    On the growth of the resolvent operators for power bounded operators

    No full text
    Outline. In this paper I discuss some quantitative aspects related to power bounded operators T and to the decay of Tn(T−1)T^{n}(T-1). For background I refer to two recent surveys J. Zemánek [1994], C. J. K. Batty [1994]. Here I try to complement these two surveys in two different directions. First, if the decay of Tn(T−1)T^{n}(T-1) is as fast as O(1/n) then quite strong conclusions can be made. The situation can be thought of as a discrete version of analytic semigroups; I try to motivate this in Section 1 by demonstrating the similarity and lack of it between power boundedness of T and uniform boundedness of et(cT−1)e^{t(cT-1)} where c is a constant of modulus 1 and t > 0. Section 2 then contains the main result in this direction. I became interested in studying the quantitative aspects of the decay of Tn(T−1)T^{n}(T-1) since it can be used as a simple model for what happens in the early phase of an iterative method (O. Nevanlinna [1993]). Secondly, the so called Kreiss matrix theorem relates bounds for the powers to bounds for the resolvent. The estimate is proportional to the dimension of the space and thus has as such no generalization to operators. However, qualitatively such a result holds in Banach spaces e.g. for Riesz operators: if the resolvent satisfies the resolvent condition, then the operator is power bounded operator (but without an estimate). I introduce in Section 3 a growth function for bounded operators. This allows one to obtain a result of the form: if the resolvent condition holds and if the growth function is finite at 1, then the powers are bounded and can be estimated. In Section 4 in addition to the Kreiss matrix theorem, two other applications of the growth function are given
    corecore