2 research outputs found

    Nanocomp贸sitos hidrogeles biopolim茅ricos con 贸xido de grafeno para impresi贸n 3D de andamios para ingenier铆a de tejido cartilaginoso

    No full text
    Tesis para optar al grado de Doctor en Ciencias de la Ingenier铆a, Menci贸n en Ciencia de los MaterialesEnfermedades asociadas a la degeneraci贸n del tejido cartilaginoso representan un elevado costo en la calidad de vida de quienes la padecen, produciendo dolor y discapacidad motora, adem谩s de un considerable gasto p煤blico. La utilizaci贸n de c茅lulas madre mesenquimales (MSCs) bajo el concepto de ingenier铆a de tejidos y medicina regenerativa (ITMR) es una atractiva opci贸n de tratamiento de lesiones del cart铆lago, ya que permitir铆a solucionar los problemas asociados a la limitada capacidad auto-regenerativa de este tejido. Andamios basados en hidrogeles bioconjugados con pol铆meros naturales son atractivos para ITMR debido a que estos imitan las caracter铆sticas del tejido humano blando y semirr铆gido. Los hidrogeles bioconjugados exhiben mayor biocompatibilidad y pueden estimular distintos procesos biol贸gicos como proliferaci贸n y diferenciaci贸n celular, as铆 como la secreci贸n de la matriz extracelular (ECM) que formar谩 el nuevo tejido. Unas de las t茅cnicas de fabricaci贸n m谩s innovadoras son la impresi贸n 3D de andamios y la bioimpresi贸n 3D de constructos cargados con c茅lulas, para aplicaciones biom茅dicas en un concepto de medicina personalizada. A pesar de las propiedades 煤nicas de este tipo de biomaterial para aplicaciones en ITMR, los hidrogeles presentan problemas de procesabilidad que limitan su uso en bio-/impresi贸n 3D, motivando la incorporaci贸n de nanopart铆culas que mejoran estas limitantes y que adem谩s puedan incrementar la bioactividad. El objetivo de este trabajo es desarrollar nanocomp贸sitos hidrogeles biomim茅ticos de la ECM de cart铆lago para la fabricaci贸n de andamios y constructos mediante impresi贸n/bioimpresi贸n 3D, con bioactividad y procesabilidad mejorada. La base de este nuevo biomaterial es alginato metacrilado bioconjugado con gelatina y sulfato de condroitina metacrilados, mediante fotoentrecruzamiento de los biopol铆meros, el cual es reforzado con 贸xido de grafeno (GO) para mejorar la calidad de impresi贸n y bioactividad del nanocomp贸sito. Los resultados expuestos muestran que la incorporaci贸n de GO permite modular las propiedades tixotr贸picas de las tintas de hidrogel, mejorando considerablemente la fidelidad de forma y resoluci贸n de los andamios 3D impresos. Adem谩s, las tintas con la nanopart铆cula producen hebras anisotr贸picas despu茅s de ser impresas por efecto direccionador de las propiedades l铆quido-cristalinas del GO. Los ensayos in vitro con MSCs humanas develan que los andamios bioconjugados presentan mayor proliferaci贸n celular que en alginato puro, donde los nanocomp贸sitos exhiben los valores m谩s altos a largo plazo y la viabilidad de las c茅lulas adheridas a los andamios es cerca del 100 %. Notablemente, las hebras anisotr贸picas de los andamios nanocomp贸sitos fueron capaces de guiar el crecimiento celular en direcci贸n del eje mayor de la hebra impresa. Los nanocomp贸sitos hidrogeles en combinaci贸n con MSCs permitieron adem谩s obtener constructos mediante bioimpresi贸n 3D con alta fidelidad de forma y sobresaliente viabilidad celular a corto y largo plazo. La base de alginato bioconjugado es capaz de inducir diferenciaci贸n condrog茅nica en MSCs sin utilizar factores ex贸genos pro-condrog茅nesis, lo cual es potenciado al adicionar GO. La elevada citocompatibilidad y efecto condroinductivo en MSCs humanas de los andamios y constructos, sumado a la calidad de impresi贸n/bioimpresi贸n 3D y obtenci贸n de estructuras anisotr贸picas, convierten estos nanocomp贸sitos hidrogeles candidatos prometedores para aplicaciones en ITMR del cart铆lago a trav茅s de biofabricaci贸n

    Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication

    Get PDF
    Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix, while the nanofiller is based on graphene oxide to enhance the printability and cell proliferation. Our results show that the incorporation of graphene oxide into the hydrogel inks considerably improved the shape fidelity and resolution of 3D printed scaffolds because of a faster viscosity recovery post extrusion of the ink. Moreover, the nanocomposite inks produce anisotropic threads after the 3D printing process because of the templating of the graphene oxide liquid crystal. The in vitro proliferation assay of human adipose tissue-derived mesenchymal stem cells (hADMSCs) shows that bioconjugated scaffolds present higher cell proliferation than pure alginate, with the nanocomposites presenting the highest values at long times. Live/Dead assay otherwise displays full viability of hADMSCs adhered on the different scaffolds at day 7. Notably, the scaffolds produced with nanocomposite hydrogel inks were able to guide the cell proliferation following the direction of the 3D printed threads. In addition, the bioconjugated alginate hydrogel matrix induced chondrogenic differentiation without exogenous pro-chondrogenesis factors as concluded from immunostaining after 28 days of culture. This high cytocompatibility and chondroinductive effect toward hADMSCs, together with the improved printability and anisotropic structures, makes these nanocomposite hydrogel inks a promising candidate for cartilage tissue engineering based on 3D printing.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1150130 FONDEQUIP Projects EQM150101 EQM170103 EQM140012 Millennium Science Initiative of the Ministry of Economy, Development and Tourism, grant "Nuclei for Soft Smart Mechanical Metamaterials" CONICYT Beca de Doctorado Nacional 2115003
    corecore