2 research outputs found

    Reactive Oxygen Species in Neurodegenerative Diseases: Implications in Pathogenesis and Treatment Strategies

    Get PDF
    Neurodegenerative diseases are debilitating disorders which compromise motor or cognitive functions and are rapidly becoming a global communal disorder with over 46.8 million people suffering dementia worldwide. Aetiological studies have showed that people who are exposed to agricultural, occupational and environmental toxic chemicals that can interfere and degenerate dopaminergic neurons are prone to developing neurodegenerative diseases such as Parkinson Disease. The complex pathogenesis of the neurodegenerative diseases remains largely unknown; however, mounting evidence suggests that oxidative stress, neuroinflammation, protein misfolding, and apoptosis are the hallmarks of the diseases. Reactive oxygen species (ROS) are chemically reactive molecules that have been implicated in the pathogenesis of neurodegenerative diseases. ROS play a critical role as high levels of oxidative stress are commonly observed in the brain of patients with neurodegenerative disorders. This chapter focus on the sources of ROS in the brain, its involvement in the pathogenesis of neurodegenerative diseases and possible ways to mitigate its damaging effects in the affected brain

    Neurological Complications in COVID-19: Implications on International Health Security and Possible Interventions of Phytochemicals

    Get PDF
    Global health security or international health security (IHS) includes any natural or man-made phenomenon that challenged human health and well-being including emerging infectious diseases such as the current global pandemic: COVID-19. Since the sudden outburst of COVID-19 pandemic in 2019, many COVID-19 patients have exhibited neurological symptoms and signs. Till now, there is no known effective established drug against the highly contagious COVID-19 infection despite the frightening associated mortality rate. This chapter aims to present the mechanism of action of coronavirus-2 (SARS-CoV-2), the clinical neurological manifestations displayed by COVID-19 patients, impact on the global health system and present phytochemicals with neuroprotective ability that can offer beneficial effects against COVID-19 mediated neuropathology. Reports from COVID-19 clinical studies, case reports, and other related literature were evaluated. Neurological complications of COVID-19 include anosmia, acute cerebrovascular disease, acute disseminated post-infectious encephalomyelitis, encephalitis, etc. Also, SARS-CoV-2 соuld be a neurotropic vіruѕ due to its iѕоlаtіоn from сеrеbrоѕріnаl fluіd. Multірlе nеurоlоgісаl dаmаgе displayed by COVID-19 patients might be due to hyperinflammation associated with SARS-CoV-2 infections. Kolaviron, resveratrol, vernodalin, vernodalol, and apigenin are natural phytochemicals with proven anti-inflammatory and therapeutic properties that could extenuate the adverse effects of COVID-19. The phytochemicals have been documented to suppress JNK and MAPK pathways which are essential in the pathogenesis of COVID-19. They also showed significant inhibitory activities against SARS-CoV-2 main protease. Taken together, these phytochemicals may offer neuroprotective benefits against COVID-19 mediated neuropathology and suppress the burden of the pandemic on IHS
    corecore