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Abstract

Neurodegenerative diseases are debilitating disorders which compromise motor 
or cognitive functions and are rapidly becoming a global communal disorder with 
over 46.8 million people suffering dementia worldwide. Aetiological studies have 
showed that people who are exposed to agricultural, occupational and environ-
mental toxic chemicals that can interfere and degenerate dopaminergic neurons 
are prone to developing neurodegenerative diseases such as Parkinson Disease. The 
complex pathogenesis of the neurodegenerative diseases remains largely unknown; 
however, mounting evidence suggests that oxidative stress, neuroinflammation, 
protein misfolding, and apoptosis are the hallmarks of the diseases. Reactive oxygen 
species (ROS) are chemically reactive molecules that have been implicated in the 
pathogenesis of neurodegenerative diseases. ROS play a critical role as high levels 
of oxidative stress are commonly observed in the brain of patients with neuro-
degenerative disorders. This chapter focus on the sources of ROS in the brain, its 
involvement in the pathogenesis of neurodegenerative diseases and possible ways to 
mitigate its damaging effects in the affected brain.
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1. Introduction

Neurodegenerative diseases are debilitating disorders which compromise motor 
or cognitive functions and are rapidly becoming a global communal disorder with 
over 46.8 million people suffering dementia worldwide. They are characterised by 
progressive damage in neural cells and neuronal loss. Common neurodegenerative 
diseases include amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s 
disease, Huntington’s disease, and spinocerebellar ataxia [1]. These diseases repre-
sent major health challenges especially in the ageing population [2]. For instance, 
PD is the second most prevalent neurodegenerative disease affecting 1 to 2% of the 
population above age of 65 while AD is ranked the top 6 leading causes of death in 
the United States [3, 4].
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It is estimated that more than 10 million individuals with the disease will be 
domiciled in the top 10 most populous nation in the world by 2030. In Nigeria, the 
most populous nation in Africa, neurodegenerative disease related cases have a 
significant impact on the overall hospital frequency of neurological cases reported 
[5]. Some of the characterised clinical features of these diseases include bradyki-
nesia, rigidity, postural instability, resting tremor, prolonged reaction times, and 
freezing of gait, which may degenerate to tightened facial expression and uncon-
scious facial movement [6, 7]. Aetiological reports have documented that individual 
who are exposed to industrial, occupational and environmental toxic chemicals 
that can interfere with the functions of the central nervous system and degenerate 
dopaminergic neurons are prone to developing neurodegenerative diseases such as 
Alzheimer’s disease, Parkinson disease [8, 9].

The complex pathogenesis of the neurodegenerative diseases remains largely 
unknown; however, mounting evidence suggests that oxidative stress, neuroinflam-
mation, protein misfolding, and apoptosis are the hallmarks of the diseases (Figure 1). 
ROS may play a critical role as high levels of oxidative stress are commonly observed in 
the brain of patients with neurodegenerative conditions [10]. Reactive oxygen species 
(ROS) are chemically reactive molecules that have been implicated in the pathogenesis 
of neurodegenerative diseases. They are naturally generated within the biological 
system, playing significant functions in mediating cellular activities including stressor 
responses, cell survival, and inflammation. They also play pivotal role in the pathogen-
esis of many diseases such as cancer, allergy, muscle dysfunction, and cardiovascular 
disorders [11, 12]. Due to their reactivity, Presence of ROS in high quantity may lead 
to oxidative stress and ultimately cell death if left uncontrolled or treated. Oxidative 
stress is defined as the disruption of balance between pro-oxidant and antioxidant 
levels in biological systems [11].

A number of experimental studies have been carried out to elucidate the signifi-
cances of oxidative stress in neurodegenerative diseases [13, 14]. ROS may not be 
sufficient itself to induce neurodegenerative diseases but they appear to exacerbate 
the diseases’ progression through oxidative macromolecule damage and interac-
tion with mitochondria [10]. Interestingly, neuronal cells have been identified to 

Figure 1. 
Possible involvement of oxidative stress, apoptosis, and neuroinflammation in pathogenesis of 
neurodegenerative diseases.
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be vulnerable to oxidative damage due to their high oxygen consumption, high 
polyunsaturated fatty acid content in membranes, and weak antioxidant defence 
[15]. Under basal or unstressed physiological conditions, free radicals and ROS 
generated from mitochondria, NADPH oxidase (Nox), and xanthine oxidase are 
kept at relatively low levels by endogenous antioxidants [11]. Nevertheless, abnor-
mal mitochondrial function and/or neuro-inflammation can alter the redox status 
and interrupt the balance [15]. Accumulation of misfolded proteins is part of the 
hallmark of pathogenesis of some neurodegenerative diseases such as Alzheimer 
disease and Parkinson disease (Figure 2). The aggregation of these misfolded or 
modified proteins can in turn triggers inflammatory response in the brain, which 
induces marked ROS release and subsequent oxidative stress [16]. Mitochondrial 
dysfunction with concomitant aberrant ROS secretion is strongly associated with 
neurodegenerative disorders [17]. For instance, mutant huntingtin (mHTT) in HD 
may directly interact with mitochondria causing compromised and alteration in 
energy supply and increased production of ROS [18].

Another key player in the pathogenesis of neurodegenerative diseases is neuroin-
flammation. The existence of neuroinflammatory processes in human brain has also 
been confirmed during autopsy on a molecular basis. Mogi and colleagues reported 
an increase in concentrations of TNFα, β2-microglobulin, epidermal growth factor 
(EGF), transforming growth factor α (TGFα), TGFβ1, and interleukins 1β, 6, and 
2 in the striatum of patients with Parkinson’s disease [19–22]. TNFα, interleukin 
1β, and interferon γ were also detected in the effects indirectly. Proinflammatory 
cytokines, such as TNFα, interleukin 1β, and interferon γ, can induce the expression 
of the inducible form of nitric oxide synthase (iNOS) [23, 24] or cyclooxygenase 
2 (COX2) [25]. These enzymes produce toxic reactive species. Other enzymes 
involved in neuroinflammatory processes mediated by oxidative stress such as 
myeloperoxidase, NADPH oxidase, and COX2, also have increased concentrations 
in neurodegenerative diseases [26].

Apoptosis has been implicated as the major pathway involved in the progressive 
neuronal cell death/loss observed in neurodegenerative diseases. Degeneration of 
one or more nerve cell populations is a major feature in many acute and chronic 
neurological diseases. Many criteria for apoptotic cell death are also fulfilled during 
the course of chronic neurodegenerative diseases. Therefore, the development of 

Figure 2. 
Molecular mechanisms underlying pathogenesis of Parkinson’s disease and Alzheimer’s disease.
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new therapeutic strategies for the treatment of neurodegenerative diseases requires 
an understanding of the molecular mechanisms underlying neuronal apoptosis. 
Extrinsic and intrinsic apoptosis pathways and several possible avenues for cross-
talk between them can be distinguished. Whereas the extrinsic pathway is initiated 
by cell surface activation of cytokine receptors of the tumour necrosis factor (TNF) 
family, the intrinsic pathway depends on the integrity and function of mitochon-
dria within the cell [27].

Various evidences from biochemical, genetic, cellular, and neuropathological 
studies have shown that protein misfolding, oligomerization, and accumulation in 
the brain are the main events triggering pathological abnormalities responsible for 
neurodegenerative diseases [28, 29]. The proteins most commonly implicated in 
the accumulation of cerebral misfolded aggregates in neurodegenerative diseases 
include: amyloid-beta (Aβ) in Alzheimer disease; tau in Alzheimer disease, fron-
totemporal dementia, corticobasal degeneration, progressive supranuclear palsy, 
argyrophilic grain disease, and chronic traumatic encephalopathy; alpha-synuclein 
(α-Syn) in PD, multiple system atrophy, and dementia with Lewy bodies; TAR 
DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis and frontotem-
poral frontotemporal dementia; and prion proteins in PrDs (i.e., Creutzfeldt–Jakob 
disease (CJD), bovine spongiform encephalopathy, chronic wasting disease, and 
scrapie). Despite the fact that the protein aggregates involved in distinct neurode-
generative diseases are different, the process of protein misfolding, its intermedi-
ates, end-products, and main features are remarkably similar [30].

Considering the pivotal roles of oxidative stress, neuroinflammation, protein 
misfolding, and apoptosis in neurodegenerative diseases (Figure 1), the manipula-
tion of major key players in each of the pathological mechanisms may represent a 
promising treatment option to slow down neurodegeneration and alleviate associ-
ated symptoms. This chapter examine the role of reactive oxygen species (ROS) and 
oxidative stress in the pathogenesis and progression of neurodegenerative diseases. 
This chapter focus on the sources of ROS in the brain, its involvement in the patho-
genesis of neurodegenerative diseases and possible ways to mitigate its damaging 
effects in the brain.

2. Role of oxidative stress in pathogenesis of Parkinson’s disease (PD)

PD is the second most common neurodegenerative disorder, characterised by the 
degeneration of dopaminergic neurons in the brain’s substantia nigra pars compacta 
[31]. PD affects around 1–2 percent of the population over the age of 65, and the 
prevalence rises to 4% in people over the age of 85 [32]. Overabundance of ROS or 
other free radicals has been linked to the pathological mechanism underlying dopa-
minergic neuron degeneration. Mitochondrial dysfunction or inflammation may 
both cause excessive ROS production [10]. The proper role of redox-sensitive signal-
ling proteins in neuron cells, as well as neuronal survival, is dependent on maintain-
ing redox homeostasis [33]. Mitochondria in neurons and glia are the main sources 
of ROS in the brain [10]. The production of these free radicals is exacerbated in PD 
due to neuroinflammation, dopamine degradation, mitochondrial dysfunction, 
ageing, GSH depletion, and high levels of iron or Ca2+ [10].

Consequently, when people with PD are exposed to environmental factors 
including pesticides, neurotoxins, and dopamine, ROS deposition may be exac-
erbated [34]. This is supported by a strong link between pesticide exposure and 
an increased risk of Parkinson’s disease [34]. ROS have been shown to contribute 
significantly to dopaminergic neuronal loss [10]. Other research has indicated that 
the loss of dopaminergic neurons is linked to the existence of neuromelanin, since 
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highly pigmented neurons are more vulnerable to damage [35]. The formation of 
neuromelanin appears to be related to dopamine auto-oxidation, a process induced 
by ROS overproduction [35].

Neurodegeneration produces reactive oxygen species (ROS), which can destroy 
key cellular proteins and disrupt lipid membranes, leading in oxidative stress. 
Mitochondrial dysfunction increases free radical generation in the respiratory chain 
[10]. Parkinson’s disease has been linked to deficiencies in mitochondrial complex 
I in particular. Certainly, a significant portion of the unfavourable neuronal apop-
tosis seen in Parkinson’s disease is due to a complex I deficiency [36]. A mutation in 
the PTEN-induced putative kinase 1 gene is associated to this impairment (PINK1). 
PINK1 is a protein found in all human tissues that plays a key role in keeping 
mitochondrial membrane potential and preventing oxidative stress [36]. The PINK1 
mutation is linked to the onset of Parkinson’s disease [36]. Mutations of leucine-rich 
repeat kinase 2 (LRRK2), parkin, alpha-synuclein, and DJ-1 have all been linked to 
the pathogenesis of Parkinson’s disease. These mutations may impair mitochondrial 
function, resulting in an increase in reactive oxygen species (ROS) production and 
oxidative stress vulnerability. Mutant parkin may play key roles in the development 
of autosomal recessive PD due to its involvement in lowering ROS and limiting the 
production of neurotoxic proteins produced by ubiquitination [36]. Additionally, 
alpha synuclein aggregation has been demonstrated to disrupt mitochondrial com-
plex I activities, causing ATP production impairment and mitochondrial malfunc-
tion [37]. Proteasomal dysfunction which is exacerbated by dopamine-derived ROS, 
has been linked to neurodegeneration in Parkinson’s disease [37].

Currently, there is no effective cure for the treatment of Parkinson’s disease, 
however, deeper insights into the role of ROS in the disease pathogenesis (initia-
tion and progression) should lead to more effective treatments for PD symptoms. 
Many neuroprotective approaches have been discovered to minimise mitochondrial 
oxidative stress in dopaminergic neurons. Free radicals damage has been proven to 
be reduced by antioxidants [38]. GSH, ascorbic acid and tocopherol are essential 
antioxidants that the antioxidant lipoic acid can recycle. Secretion of GSH which 
enhance reduction of lipid peroxide is one of the mechanisms by which lipoic acid 
offered beneficial effects against oxidative damage in oxidative stress-induced 
mitochondrial dysfunction [39]. In an animal study, it was discovered that treat-
ment with lipoic acid enhanced motor coordination and ATP efficiency resulting 
in neuroprotection [40]. Furthermore, treatment of lipoic acid in a rotenone rats’ 
model of parkinsonian rats showed enhanced motor performance and marked 
reduction in neuronal lipid peroxide in the brain [40]. Neuroprotective ability of 
phytochemicals and antioxidant substances including polyphenols, Ginko biloba, 
docosahexaenoic acid (DHA), tocopherol, ascorbic acid, and coenzyme Q10, and 
have all been studied in animal experiments with remarkable findings [41–46]. 
However, no convincing evidence of their neuroprotective benefits has been found 
in human [47]. Failures of such antioxidant medications should provide future 
recommendations for treating PD patients with combination therapies aimed at 
limiting ROS production in the brain and improving mitochondrial function [48].

3. Role of oxidative stress in pathogenesis of Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is the most common neurodegenerative disease, 
characterised by gradual declines in memory, behaviour, and functionality that 
severely limit day-to-day activities [49]. The pathophysiology of Alzheimer’s disease 
is primarily linked to the formation of extracellular amyloid beta (Aβ) plaques and 
intracellular tau neurofibrillary tangles (NFT) [50]. Plaques in the endoplasmic 



Reactive Oxygen Species

6

reticulum (ER) can deplete calcium ions (Ca2+) storage, resulting in cytosolic Ca2+ 
overload. Endogenous GSH levels are reduced in response to an increase in cytosolic 
Ca2+, and ROS will accumulate within the cells [51]. ROS-induced ROS overpro-
duction is believed to play a critical role in the aggregation and secretion of Aβ in 
AD, and oxidative stress is emerging as a significant factor in the pathogenesis of 
AD [52]. Mitochondrial dysfunction can result in increased production of reac-
tive oxygen species (ROS), decreased ATP production, altered Ca2+ homeostasis, 
and excitotoxicity. All these alterations may be implicated in the development of 
AD [53].

Overactivation of N-methyl-D-aspartate-type glutamate receptors (NMDARs) 
can cause severe oxidative stress in Alzheimer’s patients. NMDAR activation has been 
showed to trigger excessive Ca2+ influx by increasing cell permeability and resulting 
in the production of neurotoxic levels of reactive oxygen and nitrogen species (RNS) 
[54, 55]. JNK/stress-activated protein kinase pathways can be mediated by reactive 
oxygen species (ROS). The hyperphosphorylation of tau proteins and Aβ-induced cell 
death have both been linked to the activation of these cascades [56]. Furthermore, 
Aβ proteins can directly cause formation of free radicals by inducing NADPH oxi-
dase [57]. The activation of p38 mitogen activated protein kinase (p38 MAPK) by 
Aβ-induced ROS overproduction modifies cellular signalling pathways and initiates 
tau hyperphosphorylation. Intracellular NFT formation may be caused by an abnor-
mal aggregation of hyperphosphorylated tau proteins [58, 59]. Consequently, Aβ has 
been shown to play a key role in the induction of cellular apoptosis [60]. Aβ may boost 
the activity of calcineurin, which then activates the Bcl-2-associated death promoter, 
causing mitochondrial cytochrome c release [61]. Aβ can also interact directly with 
caspases, resulting in neuron apoptosis [61].

Environmental stress, ageing, inflammation, and certain dietary factors (e.g., 
redox-active metals) may all trigger an increase in Aβ output by inducing addi-
tional oxidative stress [62]. Oxidative stress is more common in the elderly, which 
helps to explain why older people are more susceptible to Alzheimer’s disease [62]. 
Increased expression of cytokines, ROS levels, and cellular toxicity are all caused by 
inflammation, which accelerates the development of Alzheimer’s disease [63]. Aβ 
deposition results in microglial activation [64]. It’s becoming clear that sustained 
activation of microglia results in the release of pro-inflammatory cytokines, trig-
gering a pro-inflammatory cascade and leading to neuronal loss and damage [65]. 
Environmental factors such as toxins, chemicals, and radiation may cause oxidative 
stress [66]. The production of reactive oxygen species (ROS) increases, where there 
are excess iron deposits [66]. Aβ itself can interact with metal ions to generate free 
radicals, therefore methionine 35 plays an important role in these reactions [67]. 
Cu2+/Zn2+-bound Aβ has been showed to have a structure identical to superoxide 
dismutase (SOD), suggesting that it could have antioxidant properties [68]. As a 
result, Cu2+ and Zn2+ supplementation has been considered as a novel strategy to 
reduce Aβ-induced ROS generation and metal catalysed Aβ deposition [68].

Drugs for Alzheimer’s disease are aimed at lowering Aβ oligomers and phosphor-
ylated tau levels, lowering oxidative stress, and regulating epigenetic changes [69]. 
The majority of Alzheimer’s disease therapies depend on compounds with neuro-
protective, anti-inflammatory, and antioxidant properties [70]. Medications that 
target ROS-mediated cascades like JNK and NF-B (e.g., tocopherol, resveratrol, and 
rutin) have demonstrated some promising results in vitro and in vivo [49]. When 
using antioxidants, significant factors including reaction kinetics and bioavail-
ability (permeability, retention in the targeted region, distribution, and transport) 
must be taken into account [70]. Several ROS-related neuroprotective therapeutic 
techniques have shown great promise in the treatment of Alzheimer’s disease. The 
antioxidant response element (ARE) pathway regulated by nuclear factor erythroid 
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2-related factor 2 (Nrf2) is known to be an important conditioned response against 
oxidative stress [71]. The binding of Nrf2 to ARE activates the expression of several 
antioxidant genes in a synchronised manner that can work together for oxidative 
detoxification. Weakened Nrf2-ARE pathways were observed in the brains of trans-
genic mice with AD symptoms, while the enhancement of Nrf2-ARE cascades using 
adenoviral Nrf2 gene transfer has shown protective effects against the toxicity of Aβ 
deposition [71]. As a result, transcriptional modulation of endogenous antioxidants 
could hold great promise in the treatment of Alzheimer’s disease symptoms [71].

4.  Role of oxidative stress in pathogenesis of spinocerebellar ataxia 
disease

Spinocerebellar ataxia is a progressive neurodegenerative illness caused by 
an autosomal dominant gene. Cognitive impairments, dysarthria, osculomotor 
abnormalities, and ataxic gait are all well-known signs of spinocerebellar ataxia, 
which can lead to mortality. Based on genetic descriptions, about 20 forms of spi-
nocerebellar ataxia have been identified [72, 73]. The main pathogenic mutation in 
spinocerebellar ataxia has been linked to the expansion of repeated CAG trinucleo-
tides [74]. The mutant ataxin 1 (ATXN1) protein, which has an enlarged polyglu-
tamine, is overexpressed as a result of the mutation from expansion of repeated 
CAG trinucleotides. RAR-related orphan receptor alpha, which plays a key role in 
Purkinje cell activities, can be affected by mutant ataxin 1. Reduced RAR-related 
orphan receptor alpha gene expression has been linked to cerebellar hypoplasia and 
ataxia [75].

Majority of spinocerebellar ataxia are thought to be genetic disorders linked 
to ATXN mutations, however, different pathogenic pathways involving mito-
chondrial malfunction have been hypothesised [75]. Hakonen et al. [76] reported 
mitochondrial DNA depletion and respiratory complex I deficiency in the brain of 
infantile-onset spinocerebellar ataxia patients. Small concentration of ROS has been 
documented to be beneficial for cellular activities including cell signalling, none-
theless, higher concentration is dangerous to the brain being neurotoxic and have 
been established to cause neurodegeneration [49]. A study conducted by Stucki et 
al. have reported marked mitochondrial alterations and excessive accumulation of 
oxidative stress in the Purkinje cells of Spinocerebellar ataxia 1. It was suggested 
that there exists a connection between oxidative stress mediated mitochondrial 
impairments and the progression of spinocerebellar ataxia [75]. Similarly, the 
study evaluated the possible neuroprotective roles of MitoQ (a mitochondrial 
antioxidant) in a spinocerebellar ataxia mouse model. The result revealed long-term 
treatment of MitoQ markedly improved mitochondrial morphology and enhanced 
its functions in Purkinje cells resulting in amelioration of spinocerebellar ataxia 
1-related symptoms including motor incoordination [75]. This report demonstrated 
the neuroprotective potential of mitochondria-targeted antioxidants as a potential 
treatment for spinocerebellar ataxia 1.

Similar to previous neurodegenerative diseases discussed, pathogenesis of spino-
cerebellar ataxia is associated with mitochondrial dysfunction [77]. For instance, 
Friedreich ataxia, is characterised by the absence of frataxin, an iron transporter 
protein located on the mitochondrial inner membrane. Decrease in the level of 
frataxin, leads to increase in concentration of iron in the mitochondrial matrix, thus 
stimulating the Fenton reaction which convert of H2O2 to ˙OH. The highly reactive 
˙OH molecules can compromise the efficiency of energy production in neuron cells 
by causing oxidative damage to mitochondria [77]. Therefore, antioxidant supple-
mentation, such as coenzyme Q10 and tocopherol, has been proven to increase 
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energy production in many Friedreich ataxia patients by decreasing oxidative stress 
and restoring mitochondrial activity [78].

Because the brain contains so many mitochondria, mitochondrial malfunction 
can have a considerable deleterious impact on the nervous system. ROS are created 
spontaneously by the mitochondrial respiratory chain and are vital for sustaining 
mitochondrial function as well as brain cell resilience. However, there has been little 
study done to determine the potential involvement of ROS in spinocerebellar ataxia 
illnesses and establish optimum therapy options. More research is required to better 
understand the redox mechanisms driving various forms of spinocerebellar ataxias, 
with an emphasis on ROS-targeted therapy.

5. Role of oxidative stress in pathogenesis of Huntington’s disease (HD)

Huntington’s Disease, a neurological disorder is associated with unstable ampli-
fication of cytosine, adenine, and guanine (CAG) repeats in the HTT gene [79]. 
Development of CAG repeats within exon 1 of the huntingtin (HTT) gene results 
in a mutation that causes the polyglutamine tract to elongate, resulting in an HTT 
protein product that is prone to aggregation [79]. The mutant huntingtin (mHTT) 
aggregates are accrued throughout the brain of the affected persons, which can 
disturb transcription process and protein quality control. Those alterations are 
potentially responsible for the impaired cognitive functions and aberrant motor 
observed in HD are caused by mutant huntingtin aggregations and concomitant 
alterations om transcription process and protein quality control [79]. Currently 
available meditations for HD is palliative as it only inhibits the degree of severeness 
of symptoms. No meditation/remedy has effectively treated or markedly reversed 
or arrested the progression of the disease [79]. The mutant huntingtin has been 
demonstrated to suppress the expression of peroxisome proliferator-activated 
receptor-coactivator-1 and reduce the concentration of striatal mitochondrial [79, 
80]. Similarly, mutant huntingtin has been documented as mutant of HD which has 
been implicated in the development of neuronal nuclear inclusion in HD as a result 
of excessive accumulation of cytoplasmic plaque [81]. Notwithstanding the well-
proven connection between HD and OS, researches focused at providing treatment 
for the disease using antioxidant approach have not been successful [82].

A number of studies have documented that there exists link between irreversible 
neuronal damage and elevated oxidative markers [83]. The concentrations of well-
established indicators of oxidative damage in HD such as neuron-specific enolase 
(NSE) and 8-hydroxy-2-deoxyguanosine (8-OHdG) have been monitored in one 
study to determine the benefits of neuro rehabilitation exercise [84]. Furthermore, 
Cu/Zn-SOD (SOD1) was documented as a possible peripheral indicator of neuronal 
oxidative damage, with levels considerably higher in HD patients compared to 
controls, implying a compensatory response to increasing oxidative levels in HD 
patients [84]. Nevertheless, consideration of SOD1 as an oxidative biomarker in HD 
remains undecided due to varied results obtained displaying different activity and 
concentration levels of SOD in HD [85]. After the end of the three weeks regimen 
neurorehabilitation exercise program, significant reduction in the levels of 8-OHdG 
and NSE were documented while SOD1 level remained high, indicating the possible 
neuroprotective role of SOD1 as an antioxidant enzyme mitigating against oxida-
tive stress and scavenging free radicals [84]. Taken together, physical exercise was 
suggested for HD patients as it may possibly inhibit the disease progression and 
enhance redox homeostasis [86].

The consequence of HD on brain energy levels has stimulated researchers’ 
interest. In HD patients, reduced glucose consumption and higher lactate levels 
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have been observed, supporting the theory that HD reduces energy levels [81]. 
According to new researches, oxidative damage is connected to reduced expression 
of the glucose transporter (GLUT)-3, which consequences lead to lactate build-up 
and glucose uptake inhibition [87]. Most of ATP synthesis take place via the pro-
duction of proton motive force through processes of the electron transport chain 
[88]. mHTT has been demonstrated to perform a crucial function in mitochondrial 
dysfunction. Panov et al. [89] used electron microscopy to detect that the interac-
tion between mitochondrial membranes and the N-terminal of mHTT leads to 
mitochondrial calcium abnormalities. Furthermore, mHTT inhibits respiratory 
complex II in a direct manner [90]. This alteration of the mitochondrial electron 
transport could lead to over production ROS with concomitant reduction in produc-
tion of ATP [90].

According to a new mechanism hypothesised in 2015 for mitochondrial damage 
in HD, oxidative stress could incapacitate glyceraldehyde-3-phosphate dehydroge-
nase catalytic activities. The incapacitated glyceraldehyde-3-phosphate dehydroge-
nase is linked with impaired mitochondria which serve as a signalling molecule to 
initiate the damaged mitochondria towards lysosome engulfment through selective 
degradation. However, in the existence of mHTT, incapacitate glyceraldehyde-
3-phosphate dehydrogenase can react unusually with the long polyglutamine 
of mHTT at the mitochondrial outer membrane, which result in the inhibition 
of degradation pathway mediated by incapacitate glyceraldehyde-3-phosphate 
dehydrogenase. As a result, impaired mitochondria are unable to be engulfed by 
lysosomes resulting into excessive accumulation of mHTT-expressing cells, thus, 
facilitating cell death [91]. ROS and mitochondrial alterations can both encourage 
the positive feedback loops, exacerbating neuronal loss in the cortex and striatum 
and increases oxidative stress [79]. Excessive generation of ROS and mitochondrial 
alterations have been implicated in the pathogenesis of HD, however, the event that 
occurred first remain elusive [92].

3-nitrotyrosine, thiobarbituric acid reactive substances (TBARS), and protein 
carbonyls are some of the other oxidative biomarkers often used in HD models [93]. 
Likewise, elevated levels of F2-isoprostane have been reported in the cerebrospinal 
fluid and brain tissue of Alzheimer’s disease and HD patients. As a result, measur-
ing F2-isoprostane could be a useful way to assess the relevance of oxidative stress 
in HD patients. It’s worth noting that F2-isoprostane levels between the HD and 
control groups may overlap in the early stages of HD development [94]. Thus, 
interpretation of modifications of oxidative biomarkers in HD should be done with 
caution due to involvement of oxidative stress in other pathological conditions such 
as ageing, cancer, and soon. Additionally, oxidative biomarkers alterations levels 
may not reveal adequate evidence on whether the oxidative alterations perform a 
significant role on the neuronal cell death or disease pathogenesis [94]. The use 
of more sensitive and specific indicators or biomarkers would be essential to give 
detailed information and elucidate the specific functions performed by free radi-
cal and oxidative stress in pathogenesis of neurodegenerative diseases, which will 
provide a mechanistic approach to finding a suitable drug candidate for the effec-
tive treatment of HD.

6.  Role of oxidative stress in pathogenesis of amyotrophic lateral 
sclerosis

Amyotrophic lateral sclerosis is a disease in which motor neurons in the anterior 
horn of the spinal cord gradually diminish [95]. Depending on whether there 
is a strongly outlined inherited genetic factor, amyotrophic lateral sclerosis is 
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characterised as familial or sporadic. Sporadic amyotrophic lateral sclerosis usu-
ally appears between the ages of 50 and 60 [96]. Because the cause of sporadic 
amyotrophic lateral sclerosis is unknown, finding causal genes and environmental 
variables has been difficult. About 20% of instances of familial amyotrophic lateral 
sclerosis were caused by mutations in the SOD1 gene [97]. SOD1 has many activi-
ties, including posttranslational modification, energy consumption, controlling 
cellular respiration, and scavenging superoxide radicals (O2 

•–) [98]. Despite the 
fact that SOD malfunction results in a loss of antioxidant capacity, research sug-
gests that genetic ablation of SOD1 in mice does not result in neurodegenerative 
diseases [14]. In divergence, the gain-of-function of mutant SOD1 protein has been 
markedly documented in the motor neuron diseases [14]. For example, a study has 
exhibited that mutant SOD1 can altered the amino acid biosynthesis of cells in a 
yeast model and induced cellular destruction, responsible for the neural degenera-
tion in amyotrophic lateral sclerosis [99].

Rac1 is directly regulated by SOD1 via endosome connection, which then acti-
vates Nox. Redoxosomes which as Nox-containing endosomes play an essential role 
in NF-kB-mediated regulation of proinflammatory signals. Nox converts molecular 
oxygen into O2 

•–, which has vital functions in antibacterial activity, enzyme 
control, and cell signalling (Li et al., 2011). The ratio of reactive oxygen species to 
antioxidative molecules is balanced under normal physiological conditions. On the 
other hand, during pathological conditions, there is always rapid fluctuations in 
ROS levels and disturbances in antioxidant function, which result in elevated level 
of apoptosis, lipid peroxidation, and DNA damage during disease states [49]. SOD1 
is an enzyme which convert O2 

•– into hydrogen peroxide (H2O2) and molecular 
oxygen. SOD1 mutants increase Nox2-dependent ROS generation, which is assumed 
to be the cause of motor neuron death in amyotrophic lateral sclerosis [100]. SOD1 
that has been oxidised or misfolded has been found to cause mitochondrial dys-
function, which has been linked to the aetiology of sporadic amyotrophic lateral 
sclerosis [101].

Mutant SOD1 may enhance the progression of familial amyotrophic lateral 
sclerosis via the alterations of signal transduction pathways in motor neurons and 
in the activity of supportive glial cells [100]. SOD1, for instance, is regarded to be a 
key cell-signalling molecule with neuromodulatory functions. SOD1 is secreted via 
the microvesicular secretory pathway, according to studies in vitro and in transgenic 
mice models. SOD1 secreted into the environment binds to muscanaric receptors 
on nearby neurons, increasing intracellular Ca2+ concentration and ERK/AKT 
signalling [102]. SOD1 preserves motor neuron integrity by activating ERK/AKT 
signalling, and it has been demonstrated that SOD1 secretion can be enhanced in 
neurons under oxidative stress conditions [103]. Propofol conditioning treatment 
was demonstrated to protect the spinal cord against ischemia–reperfusion injury in 
rats by boosting PI3K/AKT signalling, which could be mediated by enhanced SOD1 
activity [104]. Furthermore, oxidative stress can cause neuron cell death by block-
ing the neuroprotective IGF-I/AKT pathway, implying that the role of AKT signal-
ling in neurodegeneration should be investigated further [105].

In conclusion, over secretion of ROS in the brain leads to oxidative stress which 
if not suppressed or inhibited could lead to oxidative damage of essential compo-
nents of the central nervous system. This can also initiate or enhance some reactions 
which may have detrimental effects on the physiological functions and health of the 
brain. These reactions such as neuroinflammation, progressive neuronal cell loss via 
apoptosis if not abated can exacerbate protein misfolding and formation of protein 
aggregates resulting into neurodegeneration and associated neurobehavioural 
incompetence. Considering the pivotal roles of oxidative stress, neuroinflamma-
tion, protein misfolding, and apoptosis in neurodegenerative diseases (Figure 1), 
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the manipulation of these major players in each of the pathological mechanisms 
may represent a promising treatment option to slow down neurodegeneration and 
alleviate associated symptoms.
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of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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