31 research outputs found

    Actively tunable thin films for visible light by thermo-optic modulation of ZnO

    Get PDF
    Applications of active control of light matter interactions within integrated photonics, hyper-spectral imaging, reconfigurable lasers, and selective bio-surfaces have enormously increased the demand for realization of optical modulation covering the spectrum from ultraviolet (UV) up to infrared (IR) wavelength range. In this study, we demonstrate ZnO-based actively tunable perfect absorber operating within UV and visible spectrum with more than 5 nm shift in the resonant absorption wavelength. Using spectroscopic ellipsometry technique, we extract temperature-dependent optical constants of atomic layer-deposited ZnO within 0.3-1.6 and 4-40 μm spectra. We also observe bandgap narrowing of ZnO at elevated temperatures due to lattice relaxation verified by the red-shift of phonon-modes. At around its bandgap, refractive index variations up to 0.2 is obtained and ZnO is shown to exhibit thermo-optic coefficient as high as 9.17 × 10-4 K-1 around the bandgap which is the largest among well-known large bandgap materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles

    Get PDF
    Plasmonically enhanced absorbing structures have been emerging as strong candidates for photovoltaic (PV) devices. We investigate metal-insulator-metal (MIM) structures that are suitable for tuning spectral absorption properties by modifying layer thicknesses. We have utilized gold and silver nanoparticles to form the top metal (M) region, obtained by dewetting process compatible with large area processes. For the middle (I) and bottom (M) layers, different dielectric materials and metals are investigated. Optimum MIM designs are discussed. We experimentally demonstrate less than 10 percent reflection for most of the visible (VIS) and near infrared (NIR) spectrum. In such stacks, computational analysis shows that the bottom metal is responsible for large portion of absorption with a peak of 80 percent at 1000 nm wavelength for chromium case. �2016 Optical Society of America

    MIMIM photodetectors using plasmonically enhanced MIM absorbers

    Get PDF
    We demonstrate super absorbing metal-insulator-metal (MIM) stacks and MIMIM photosensitive devices operating at visible and near-infrared (VIS-NIR) spectrum, where absorbing (top) MIM and photocollecting (bottom) MIM can be optimized separately. We investigate different bottom metals in absorbing MIM with nanoparticles realized by dewetting of silver thin film on top. While gold and silver have conventionally been considered the most appropriate plasmonic absorbers, we demonstrate different absorbing metals like aluminum and specifically chromium, with its plasma frequency happening at 850 nm, as more efficient layers for absorption. Absorption in chromium hits 82 percent around 1000 nm. We provide convincing evidences by doing reflection experiment and computational simulations for absorbing MIM part. We also suggest for the first time investigating electric loss tangent of metal or coherently, surface plasmon quality factor of absorbing metals which are reliable tools for engineering different metal layers. They reveal that despite the fact that gold and silver are good plasmonic scatterers in VIS-NIR and reliable absorbers in VIS region, they are not proper choices as absorbers for NIR applications. Once the most optimum absorbing design is pointed out, we integrate it on top of another metal-insulator to form an MIMIM photodetector with tunneling photocurrent path. The final optimized sample consisting of silver - hafnium oxide - chromium - aluminum oxide - silver nanoparticles (from bottom to top) has a dark current of 7nA and a photoresponsivity peak of 0.962 mA/W at 1000 nm and a full width at half maximum of 300 nm, while applied bias is 50 mV and device areas are 300 μm x 600 μm. This photoresponse shows 70 times enhancement compared to former reported spin coated rare nanoparticle MIMIMs. © 2017 SPIE

    Demonstration of flexible thin film transistors with GaN channels

    Get PDF
    We report on the thin film transistors (TFTs) with Gallium Nitride (GaN) channels directly fabricated on flexible substrates. GaN thin films are grown by hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) at 200 °C. TFTs exhibit 103 on-to-off current ratios and are shown to exhibit proper transistor saturation behavior in their output characteristics. Gate bias stress tests reveal that flexible GaN TFTs have extremely stable electrical characteristics. Overall fabrication thermal budget is below 200 °C, the lowest reported for the GaN based transistors so far. © 2016 Author(s

    Wideband 'black silicon' for mid-infrared applications

    Get PDF
    In this paper, we investigate the absorption of mid-infrared light by low resistivity silicon textured via deep reactive ion etching. An analytical description of the wave propagation in black silicon texture is presented, showing agreement with the experiment and the computational analysis. We also study the dependence of absorption spectrum of black silicon structure on the electrical conductivity of silicon substrate. The structures investigated unveil wideband, all-silicon infrared absorbers applicable for infrared imaging and spectroscopy with simple CMOS compatible fabrication suitable for optoelectronic integration. © 2017 IOP Publishing Ltd

    Digitally alloyed ZnO and TiO2 thin film thermistors by atomic layer deposition for uncooled microbolometer applications

    Get PDF
    The authors demonstrate the digital alloying of ZnO and TiO2 via atomic layer deposition method to be utilized as the active material of uncooled microbolometers. Depositions are carried out at 200 °C. Crystallinity of the material is shown to be degraded with the increase of the Ti content in the grown film. A maximum temperature coefficient of resistance (TCR) of −5.96%/K is obtained with the films containing 12.2 at. % Ti, and the obtained TCR value is shown to be temperature insensitive in the 15-22 °C, thereby allowing a wide range of operation temperatures for the low cost microbolometers. © 2017 American Vacuum Society

    Plasmonically enhanced metal-insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications

    Get PDF
    Plasmonically enhanced metal-insulator-metal (MIM) type structures are popular among perfect absorbers and photodetectors in which the field enhancement (for increased absorption) mechanism is directly coupled with collection (photocurrent) processes. In this work we propose a device structure that decouples absorption and collection parts for independent optimization. Double-stacked MIM (i.e. MIMIM) photodetectors operating in the near-infrared (NIR) spectrum up to 1200 nm wavelength are demonstrated. In the absorbing MIM (at the top side), we have used Silver nanoparticles resulting from dewetting, yielding a very low reflection of 10% for the most part of the 400 to 1000 nm wavelength range. An unconventional plasmonic material, Chromium, exhibits an absorption peak of over 80% at 1000 nm. The complete device has been fabricated and the photo-collection tunneling MIM (at the bottom) suppresses the leakage current by metal workfunction difference. An optimized stack consisting of Silver-Hafnium Oxide-Chromium-Aluminum Oxide-Silver nanoparticles (from bottom to top) yields a dark current of 7 nA and a photoresponsivity peak of 0.962 mA/W at 1000 nm and a full width at half maximum of 300 nm, while applied bias is 50 mV and device areas are 300 μm × 600 μm. © 2017 The Author(s)

    Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector

    Get PDF
    We report on the fabrication and characterization of a Schottky ultraviolet graphene/AlGaN/GaN photodetector (PD). The fabricated device clearly exhibits rectification behaviour, indicating that the Schottky barrier is formed between the AlGaN and the mechanically transferred graphene. The Schottky parameters are evaluated using an equivalent circuit with two diodes connected back-to-back in series. The PD shows a low dark current of 4.77 × 10-12 A at a bias voltage of -2.5 V. The room temperature current-voltage (I-V) measurements of the graphene/AlGaN/GaN Schottky PD exhibit a large photo-to-dark contrast ratio of more than four orders of magnitude. Furthermore, the device shows peak responsivity at a wavelength of 350 nm, corresponding to GaN band edge and a small hump at 300 nm associated to the AlGaN band edge. In addition, we examine the behaviour of Schottky PDs with responsivities of 0.56 and 0.079 A W-1 at 300 and 350 nm, respectively, at room temperature. © 2016 IOP Publishing Ltd

    Practical multi-featured perfect absorber utilizing high conductivity silicon

    Get PDF
    We designed all-silicon, multi-featured band-selective perfect absorbing surfaces based on CMOS compatible processes. The center wavelength of the band-selective absorber can be varied between 2 and 22 μm while a bandwidth as high as 2.5 μm is demonstrated. We used a silicon-on-insulator (SOI) wafer which consists of n-type silicon (Si) device layer, silicon dioxide (SiO2) as buried oxide layer, and n-type Si handle layer. The center wavelength and bandwidth can be tuned by adjusting the conductivity of the Si device and handle layers as well as the thicknesses of the device and buried oxide layers. We demonstrate proof-of-concept absorber surfaces experimentally. Such absorber surfaces are easy to microfabricate because the absorbers do not require elaborate microfabrication steps such as patterning. Due to the structural simplicity, low-cost fabrication, wide spectrum range of operation, and band properties of the perfect absorber, the proposed multi-featured perfect absorber surfaces are promising for many applications. These include sensing devices, surface enhanced infrared absorption applications, solar cells, meta-materials, frequency selective sensors and modulators. © 2016 IOP Publishing Ltd

    LWIR all-atomic layer deposition ZnO bilayer microbolometer for thermal imaging

    Get PDF
    We propose an all-ZnO bilayer microbolometer, operating in the long-wave infrared regime that can be implemented by consecutive atomic layer deposition growth steps. Bilayer design of the bolometer provides very high absorption coefficients compared to the same thickness of a single ZnO layer. High absorptivity of the bilayer structure enables higher performance (lower noise equivalent temperature difference and time constant values) compared to single-layer structure. We observe these results computationally by conducting both optical and thermal simulations. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
    corecore