4,712 research outputs found
Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping
The quasi-steady structure of super-critical accretion flows around a black
hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD)
simulations. The super-critical flow is composed of two parts: the disk region
and the outflow regions above and below the disk. Within the disk region the
circular motion as well as the patchy density structure are observed, which is
caused by Kelvin-Helmholtz instability and probably by convection. The
mass-accretion rate decreases inward, roughly in proportion to the radius, and
the remaining part of the disk material leaves the disk to form outflow because
of strong radiation pressure force. We confirm that photon trapping plays an
important role within the disk. Thus, matter can fall onto the black hole at a
rate exceeding the Eddington rate. The emission is highly anisotropic and
moderately collimated so that the apparent luminosity can exceed the Eddington
luminosity by a factor of a few in the face-on view. The mass-accretion rate
onto the black hole increases with increase of the absorption opacity
(metalicity) of the accreting matter. This implies that the black hole tends to
grow up faster in the metal rich regions as in starburst galaxies or
star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628,
July 20, 2005 issue
Why Is Supercritical Disk Accretion Feasible?
Although the occurrence of steady supercritical disk accretion onto a black
hole has been speculated about since the 1970s, it has not been accurately
verified so far. For the first time, we previously demonstrated it through
two-dimensional, long-term radiation-hydrodynamic simulations. To clarify why
this accretion is possible, we quantitatively investigate the dynamics of a
simulated supercritical accretion flow with a mass accretion rate of ~10^2
L_E/c^2 (with L_E and c being, respectively, the Eddington luminosity and the
speed of light). We confirm two important mechanisms underlying supercritical
disk accretion flow, as previously claimed, one of which is the radiation
anisotropy arising from the anisotropic density distribution of very optically
thick material. We qualitatively show that despite a very large radiation
energy density, E_0>10^2L_E/(4 pi r^2 c) (with r being the distance from the
black hole), the radiative flux F_0 cE_0/tau could be small due to a large
optical depth, typically tau 10^3, in the disk. Another mechanism is photon
trapping, quantified by vE_0, where v is the flow velocity. With a large |v|
and E_0, this term significantly reduces the radiative flux and even makes it
negative (inward) at r<70r_S, where r_S is the Schwarzschild radius. Due to the
combination of these effects, the radiative force in the direction along the
disk plane is largely attenuated so that the gravitational force barely exceeds
the sum of the radiative force and the centrifugal force. As a result, matter
can slowly fall onto the central black hole mainly along the disk plane with
velocity much less than the free-fall velocity, even though the disk luminosity
exceeds the Eddington luminosity. Along the disk rotation axis, in contrast,
the strong radiative force drives strong gas outflows.Comment: 8 pages, 7 figures, accepted for publication in Ap
Bubbling Calabi-Yau geometry from matrix models
We study bubbling geometry in topological string theory. Specifically, we
analyse Chern-Simons theory on both the 3-sphere and lens spaces in the
presence of a Wilson loop insertion of an arbitrary representation. For each of
these three manifolds we formulate a multi-matrix model whose partition
function is the vev of the Wilson loop and compute the spectral curve. This
spectral curve is the reduction to two dimensions of the mirror to a Calabi-Yau
threefold which is the gravitational dual of the Wilson loop insertion. For
lens spaces the dual geometries are new. We comment on a similar matrix model
which appears in the context of Wilson loops in AdS/CFT.Comment: 30 pages; v.2 reference added, minor correction
D-branes as a Bubbling Calabi-Yau
We prove that the open topological string partition function on a D-brane
configuration in a Calabi-Yau manifold X takes the form of a closed topological
string partition function on a different Calabi-Yau manifold X_b. This
identification shows that the physics of D-branes in an arbitrary background X
of topological string theory can be described either by open+closed string
theory in X or by closed string theory in X_b. The physical interpretation of
the ''bubbling'' Calabi-Yau X_b is as the space obtained by letting the
D-branes in X undergo a geometric transition. This implies, in particular, that
the partition function of closed topological string theory on certain bubbling
Calabi-Yau manifolds are invariants of knots in the three-sphere.Comment: 32 pages; v.2 reference adde
Large transconductance oscillations in a single-well vertical Aharonov-Bohm interferometer
Aharonov-Bohm (AB) interference is reported for the first time in the
conductance of a vertical nanostructure based on a single GaAs/AlGaAs quantum
well (QW). The two lowest subbands of the well are spatially separated by the
Hartree barrier originating from electronic repulsion in the modulation-doped
QW and provide AB two-path geometry. Split-gates control the in-plane
electronic momentum dispersion. In our system, we have clearly demonstrated AB
interference in both electrostatic and magnetic modes. In the latter case the
magnetic field was applied parallel to the QW plane, and perpendicular to the
0.02 um^2 AB loop. In the electrostatic mode of operation the single-QW scheme
adopted led to large transconductance oscillations with relative amplitudes
exceeding 30 %. The relevance of the present design strategy for the
implementation of coherent nanoelectronic devices is underlined.Comment: Accepted for publication on Physical Review B Rapid Communication
Amelioration of normothermic canine liver ischemia with prostacyclin.
A model of hepatic ischemia was developed in dogs using a pump-driven splanchnic-to-jugular vein bypass during crossclamping of the portal triad. An LD50 was established with three hours of ischemia. PGI2 given for one hour before the ischemic insult ameliorated the ischemic injury and increased survival
Heavy Higgs at Tevatron and LHC in Universal Extra Dimension Models
Universal Extra Dimension (UED) models tend to favor a distinctively heavier
Higgs mass than in the Standard Model (SM) and its supersymmetric extensions
when the Kaluza-Klein (KK) scale is not much higher than the electroweak one,
which we call the weak scale UED, in order to cancel the KK top contributions
to the T-parameter. Such a heavy Higgs, whose production through the gluon
fusion process is enhanced by the KK top loops, is fairly model independent
prediction of the weak scale UED models regardless of the brane-localized mass
structure at the ultraviolet cutoff scale. We study its cleanest possible
signature, the Higgs decay into a Z boson pair and subsequently into four
electrons and/or muons, in which all the four-momenta of the final states can
be measured and both the Z boson masses can be checked. We show that the weak
scale UED model may account for the 2sigma excess of this event at ATLAS at the
ZZ pair invariant mass around 250GeV, at which scale SM background is
sufficiently small and the SM Higgs predicts too few events. We have also
studied the Higgs mass 500GeV (and also 700GeV with \sqrt{s}=14TeV) and have
found that we can observe significant resonance with the integrated luminosity
10fb^{-1} for six dimensional UED models.Comment: (v1) 36 pages, 9 figures, 6 tables; (v2) Accepted for publication in
Phys. Rev. D, factor 2 error in (93) corrected, comments and references
added, figures redrawn; (v3) Minor changes including typo corrections in
eq.(15), final version appearing in PR
Polaronic Heat Capacity in The Anderson - Hasegawa Model
An exact treatment of the Anderson - Hasegawa two - site model, incorporating
the presence of superexchange and polarons, is used to compute the heat
capacity. The calculated results point to the dominance of the lattice
contribution, especially in the ferromagnetic regime. This behavior is in
qualitative agreement with experimental findings.Comment: 9 pages, Revtex, 4 postscript figure
- …