47 research outputs found
Chronic tubulointerstitial changes induced by germanium dioxide in comparison with carboxyethylgermanium sesquioxide
Chronic tubulointerstitial changes induced by germanium dioxide in comparison with carboxyethylgermanium sesquioxide. Chronic nephrotoxicity was investigated in rats orally administered germanium dioxide (GeO2) and carboxyethylgermanium sesquioxide (Ge-132) for 24 weeks. Increased BUN and serum phosphate as well as decreased creatinine clearance, weight loss, anemia and liver dysfunction were apparent at week 24 only in the GeO2 treated group. Vacuolar degeneration and granular depositions were observed by light microscope in the degenerated renal distal tubules in the rats of this group, with the semiquantitative scores of tubular degeneration being 95 ± 9% in the GeO2 group, 3 ± 1% in the Ge-132 group and 1 ± 1% in the control group, respectively. Electron microscopy revealed electron-dense inclusions in the swollen mitochondrial matrix of the distal tubular epithelium in the GeO2 group. Although systemic toxicities were reduced after GeO2 was discontinued at week 24, renal tubulointerstitial fibrosis became prominent even at week 40 (16 weeks after discontinuation). A Ge ·Kα X-ray spectrum was clearly demonstrated in the mitochondrial matrix of the distal tubular epithelium in the GeO2 group with the help of electron probe X-ray microanalysis. On the other hand, neither toxic effects nor renal histological abnormalities were manifested in either the Ge-132 or the control group. The renal tissue content of germanium was high at weeks 24 and 40 in the GeO2 group. From these results, it is concluded that GeO2 causes characteristic nephropathy while Ge-132 does not. In addition, it appears that residual GeO2 remains for a considerably long time even after the cessation of GeO2 intake
AGEs activate mesangial TGF-β–Smad signaling via an angiotensin II type I receptor interaction
AGEs activate mesangial TGF-β–Smad signaling via an angiotensin II type I receptor interaction.BackgroundThe renin-angiotensin system (RAS) and the accumulation of advanced glycation end products (AGEs) have been implicated in the pathogenesis of diabetic nephropathy. Whether there is a functional interaction between the RAS and AGEs in diabetic nephropathy is not known. In this study, we investigated whether AGEs could activate autocrine angiotensin II (Ang II) signaling and subsequently induce transforming growth factor-β (TGF-β)–Smad signaling in cultured rat mesangial cells.MethodsThe intracellular formation of reactive oxygen species (ROS) was detected using the fluorescent probe CM-H2DCFDA. Ang II was measured by radioimmunoassay. TGF-β released into media was quantitatively analyzed in an enzyme-linked immunosorbent assay (ELISA). Smad2, p27Kip1 (p27), fibronectin, and receptor for AGEs (RAGE) protein expression were determined by Western blot analysis. TGF-β–inducible promoter activity was analyzed by a luciferase assay. DNA synthesis was evaluated by 5-bomo-2′-deoxyuridine (BrdU) incorporation and de novo protein synthesis was determined by [3H]leucine incorporation.ResultsAGEs increased intracellular ROS generation in mesangial cells, and this effect was significantly inhibited by an antiserum against RAGE. AGEs also were found to stimulate Ang II production in a time- and dose-dependent manner, which was completely prevented by an antioxidant, N-acetylcysteine (NAC). AGE-induced TGF-β overproduction was completely blocked by candesartan, an Ang II type 1 receptor (AT1R) antagonist. Both candesartan and neutralizing antibody against TGF-β completely prevented AGEs-induced Smad2 phosphorylation and TGF-β–inducible promoter activity. Furthermore, AGEs were found to inhibit DNA synthesis and to stimulate de novo protein synthesis and fibronectin production in association with up-regulation of p27. All of these phenomena were completely prevented by candesartan or a polyclonal antibody against TGF-β.ConclusionThe present study suggests that AGE-RAGE–mediated ROS generation activates TGF-β–Smad signaling and subsequently induces mesangial cell hypertrophy and fibronectin synthesis by autocrine production of Ang II. This pathway may provide an important link between metabolic and haemodynamic factors in promoting the development and progression of diabetic nephropathy
Ramipril inhibits AGE-RAGE-induced matrix metalloproteinase-2 activation in experimental diabetic nephropathy
Background: Advanced glycation end products (AGE)-receptor for AGE (RAGE) axis and renin-angiotensin system (RAS) play a role in diabetic nephropathy (DN). Matrix metalloproteinase-2 (MMP-2) activation also contributes to DN. However, the pathological interaction among AGE-RAGE, RAS and MMP-2 in DN remains unknown. We examined here the involvement of AGE and RAS in MMP-2 activation in streptozotocin (STZ)-induced diabetic rats and in AGE-exposed rat renal proximal tubular cells (RPTCs).Methods. Experimental diabetes was induced in 6-week-old male Sprague-Dawley (SD) rats by intravenous injection of STZ. Diabetic rats received ramipril (3 mg/kg body weight/day) or vehicle for 32 weeks. AGE-modified rat serum albumin (AGE-RSA) or RSA was intraperitoneally administrated to 6-week-old male SD rats for 16 weeks. RPTCs were stimulated with 100 μg/ml AGE-modified bovine serum albumin (AGE-BSA) or BSA in the presence or absence of 10 M ramiprilat, an inhibitor of angiotensin-converting enzyme or 100 nM BAY11-7082, an IκB- phosphorylation inhibitor.Results: AGE and RAGE expression levels and MMP-2 activity in the tubules of diabetic rats was significantly increased in association with increased albuminuria, all of which were blocked by ramipril. AGE infusion induced tubular MMP-2 activation and RAGE gene expression in SD rats. Ramiprilat or BAY11-7082 inhibited the AGE-induced MMP-2 activation or reactive oxygen species generation in RPTCs. Angiotensin II increased MMP-2 gene expression in RPTCs, which was blocked by BAY11-7082.Conclusions: Our present study suggests the involvement of AGE-RAGE-induced, RAS-mediated MMP-2 activation in experimental DN. Blockade of AGE-RAGE axis by ramipril may protect against DN partly via suppression of MMP-2
Efficacy of Combination Therapy with Telmisartan Plus Amlodipine in Patients with Poorly Controlled Hypertension
There is accumulating evidence that blood pressure (BP) control significantly reduces the risk of future cardiovascular events in patients with essential hypertension. However, strict BP control is often difficult to maintain, and half of hypertensive patients fail to attain BP goals on single-drug therapy. Therefore, current guidelines recommend combinations of drugs that have complimentary mode of actions for treatment of patients with moderate hypertension. In this study, we examined in hypertensive patients uncontrolled by the combination treatment with 5 mg amlodipine plus 80 mg valsartan or 8 mg candesartan whether additional BP lowering could be achieved by switching to 5 mg amlodipine plus 40 mg telmisartan. Forty-seven patients with essential hypertension who failed to achieve a target BP level by the treatment of 5 mg amlodipine plus 80 mg valsartan or 8 mg candesartan for at least 2 months were enrolled. Replacement of valsartan or candesartan by telmisartan showed a significant reduction in both mean clinic systolic and diastolic BP at 4, 8 and 12 weeks; BP level decreased from 143.7/82.3 mmHg at baseline to 135.4/77.5 mmHg at 12 weeks. Furthermore, in 8 patients of valsartan group, switching to telmisartan significantly reduced central BP by 11.8 mmHg. Our present study suggests that combination therapy with telmisartan plus amlodipine may be more beneficial than valsartan or candesartan plus amolodipine treatment for controlling brachial and central BP, which could lead to more favorable cardiovascular outcomes with this drug combinations
Differences among epitopes recognized by neutralizing antibodies induced by SARS-CoV-2 infection or COVID-19 vaccination
SARS-CoV-2 has gradually acquired amino acid substitutions in its S protein that reduce the potency of neutralizing antibodies, leading to decreased vaccine efficacy. Here, we attempted to obtain mutant viruses by passaging SARS-CoV-2 in the presence of plasma samples from convalescent patients or vaccinees to determine which amino acid substitutions affect the antigenicity of SARS-CoV-2. Several amino acid substitutions in the S2 region, as well as the N-terminal domain (NTD) and receptor-binding domain (RBD), affected the neutralization potency of plasma samples collected from vaccinees, indicating that amino acid substitutions in the S2 region as well as those in the NTD and RBD affect neutralization by vaccine-induced antibodies. Furthermore, the neutralizing potency of vaccinee plasma samples against mutant viruses we obtained or circulating viruses differed among individuals. These findings suggest that genetic backgrounds of vaccinees influence the recognition of neutralizing epitopes
Antibody titers against SARS-CoV-2 decline, but do not disappear for several months
Background:Â To develop an effective vaccine against a novel viral pathogen, it is important to understand the longitudinal antibody responses against its first infection. Here we performed a longitudinal study of antibody responses against SARS-CoV-2 in symptomatic patients.
Methods:Â Sequential blood samples were collected from 39 individuals at various timepoints between 0 and 154 days after onset. IgG or IgM titers to the receptor binding domain (RBD) of the S protein, the ectodomain of the S protein, and the N protein were determined by using an ELISA. Neutralizing antibody titers were measured by using a plaque reduction assay.
Findings:Â The IgG titers to the RBD of the S protein, the ectodomain of the S protein, and the N protein peaked at about 20 days after onset, gradually decreased thereafter, and were maintained for several months after onset. Extrapolation modeling analysis suggested that the IgG antibodies were maintained for this amount of time because the rate of reduction slowed after 30 days post-onset. IgM titers to the RBD decreased rapidly and disappeared in some individuals after 90 days post-onset. All patients, except one, possessed neutralizing antibodies against authentic SARS-CoV-2, which they retained at 90 days after onset. The highest antibody titers in patients with severe infections were higher than those in patients with mild or moderate infections, but the decrease in antibody titer in the severe infection cohort was more remarkable than that in the mild or moderate infection cohort.
Interpretation:Â Although the number of patients is limited, our results show that the antibody response against the first SARS-CoV-2 infection in symptomatic patients is typical of that observed in an acute viral infection
Antigenic Change in Human Influenza A(H2N2) Viruses Detected by Using Human Plasma from Aged and Younger Adult Individuals
Human influenza A(H2N2) viruses emerged in 1957 and were replaced by A(H3N2) viruses in 1968. The antigenicity of human H2N2 viruses has been tested by using ferret antisera or mouse and human monoclonal antibodies. Here, we examined the antigenicity of human H2N2 viruses by using human plasma samples obtained from 50 aged individuals who were born between 1928 and 1933 and from 33 younger adult individuals who were born after 1962. The aged individuals possessed higher neutralization titers against H2N2 viruses isolated in 1957 and 1963 than those against H2N2 viruses isolated in 1968, whereas the younger adults who were born between 1962 and 1968 possessed higher neutralization titers against H2N2 viruses isolated in 1963 than those against other H2N2 viruses. Antigenic cartography revealed the antigenic changes that occurred in human H2N2 viruses during circulation in humans for 11 years, as detected by ferret antisera. These results show that even though aged individuals were likely exposed to more recent H2N2 viruses that are antigenically distinct from the earlier H2N2 viruses, they did not possess high neutralizing antibody titers to the more recent viruses, suggesting immunological imprinting of these individuals with the first H2N2 viruses they encountered and that this immunological imprinting lasts for over 50 years
Involvement of iron-evoked oxidative stress in smoking-related endothelial dysfunction in healthy young men.
BACKGROUND: Oxidative stress and smoking contribute to endothelial dysfunction. Iron might also play a role in oxidative stress generation and endothelial dysfunction. However, the involvement of iron in smoking-induced endothelial dysfunction in healthy smokers remains unclear. Therefore, we examined here whether (1) intravenous iron infusion impaired endothelial function evaluated by flow-mediated vasodilatation (FMD) in non-smokers, and (2) deferoxamine, a potent iron chelator, ameliorated endothelial dysfunction in healthy smokers. METHODS: Eight healthy young male non-smokers (23 ± 4 years old) received intravenous injection of saccharated ferric oxide (0.7 mg/kg body weight), while 10 age-matched healthy male smokers received deferoxamine mesylate (8.3 mg/kg body weight). At baseline, 5 and 20 minutes after treatment with iron or deferoxamine, biochemical variables were measured, including serum iron and marondialdehyde (MDA), a marker of lipid oxidation, and endothelial function was simultaneously evaluated by FMD. RESULTS: Compared with non-smokers, FMD was significantly lower in smokers. Iron and MDA levels were significantly increased, whereas FMD was impaired by iron infusion in non-smokers. Conversely, deferoxamine treatment significantly decreased iron and MDA levels and restored the decreased FMD in smokers. Baseline serum iron and MDA levels in all 18 subjects (non-smokers and smokers) were correlated with each other. There was a significant inverse correlation between the changes in MDA values and FMD from baseline in 18 men. Endothelium-independent vasodilation by glyceryl trinitrate was unaltered by either treatment. CONCLUSIONS: Our present study suggests that iron-evoked oxidative stress might play a role in endothelial dysfunction in healthy smokers
Subclade 2.2.1-Specific Human Monoclonal Antibodies That Recognize an Epitope in Antigenic Site A of Influenza A(H5) Virus HA Detected between 2015 and 2018
Highly pathogenic avian H5 influenza viruses persist among poultry and wild birds throughout the world. They sometimes cause interspecies transmission between avian and mammalian hosts. H5 viruses possessing the HA of subclade 2.3.4.4, 2.3.2.1, 2.2.1, or 7.2 were detected between 2015 and 2018. To understand the neutralizing epitopes of H5-HA, we characterized 15 human monoclonal antibodies (mAbs) against the HA of H5 viruses, which were obtained from volunteers who received the H5N1 vaccine that contains a subclade 2.2.1 or 2.1.3.2 virus as an antigen. Twelve mAbs were specific for the HA of subclade 2.2.1, two mAbs were specific for the HA of subclade 2.1.3.2, and one mAb was specific for the HA of both. Of the 15 mAbs analyzed, nine, which were specific for the HA of subclade 2.2.1, and shared the VH and VL genes, possessed hemagglutination inhibition and neutralizing activities, whereas the others did not. A single amino acid substitution or insertion at positions 144–147 in antigenic site A conferred resistance against these nine mAbs to the subclade 2.2.1 viruses. The amino acids at positions 144–147 are highly conserved among subclade 2.2.1, but differ from those of other subclades. These results show that the neutralizing epitope including amino acids at positions 144–147 is targeted by human antibodies, and plays a role in the antigenic difference between subclade 2.2.1 and other subclades