57 research outputs found

    Conversion of ostrich eggshells (Struthio camelus) to calcium phosphates

    Full text link
    © Copyright 2015, The Australian Ceramic Society. The exceptional progress made in orthopaedic and dental applications have increased the demand of calcium phosphate bioceramics due to their chemical similarities to the inorganic component of hard tissues. Low cost production of calcium phosphate bioceramics could be achieved by using pure natural biogenic materials by relatively simple methods. In this study calcium phosphate powders were produced from ostrich (Struthio camelus) eggshell powder at a moderate temperature of 80°C by relatively simple process of low temperature heating by hot plate (HP) and hot platting while agitation with ultrasonication (HPUS) hence introducing mechanical activation. The product structure and compositions were studied with FTIR, SEM, DTA/TCA, XRD and ICP techniques. The results showed that calcium deficient hydroxyapatite and dicalcium phosphate were obtained from HP and HPUS methods. Poorly crystalline calcium deficient hydroxyapatite was converted into whilockite after calcining at 800°C. The results suggest that this low cost and relatively simple method is efficient to easily produce calcium phosphate powders from adequately feed controlled farms to obtain pure uncontaminated eggshells for a range of biomedical applications

    A new method for fabrication of nanohydroxyapatite and TCP from the sea snail Cerithium vulgatum

    Get PDF
    Biphasic bioceramic nanopowders of hydroxyapatite (HA) and β-tricalcium phosphate (TCP) were prepared from shells of the sea snail Cerithium vulgatum (Bruguière, 1792) using a novel chemical method. Calcination of the powders produced was carried out at varying temperatures, specifically at 400°C and 800°C, in air for 4 hours. When compared to the conventional hydrothermal transformation method, this chemical method is very simple, economic, due to the fact that it needs inexpensive and safe equipment, because the transformation of the aragonite and calcite of the shells into the calcium phosphate phases takes place at 80°C under the atmospheric pressure. The powders produced were determined using infrared spectroscopy (FT-IR), X-ray diffraction, and scanning electron microscopy (SEM). The features of the powders produced along with the fact of their biological origin qualify these powders for further consideration and experimentation to fabricate nanoceramic biomaterials. © 2014 O. Gunduz et al

    Comparative study of coral conversion, Part 2: Microstructural evolution of calcium phosphate

    Get PDF
    © 2015, The Australian Ceramic Society. Calcium phosphate materials can be easily produced by a number of wet chemical methods that involve both acidic and basic environments. In our previous study, we investigated calcium phosphates such as monetite (DCPA), hydroxyapatite (HAp) and whitlockite which were successfully produced by mechano-chemical method from corals obtained from the Great Barrier Reef. It was observed that a number of synthesis factors such as the pH of the environment, the reaction temperature and the chemistry influenced the crystal size formed. A number of theories have been suggested on the mechanisms of crystal formation; however, very few mechanisms have been universally accepted. The present work was aimed to explore the evolution of crystalline calcium phosphate and their morphology with respect to the pH of the environment and reaction time. Conversion of coral to calcium phosphates was carried out with stoichiometric amount of required H3PO4 or (NH4)2HPO4, to obtain hydroxyapatite or tricalcium phosphate (TCP) phases. The acidic or basic solution was added, drop wise, at a rate of 2 mL min-1, to 6 g of coral powder suspended in 300 mL of distilled water at 80 ± 0.5°C on a hot plate with magnetic stirrer. The pH of reaction was monitored. Crystal morphology and the phases were identified by XRD, FTIR, and SEM studies. It was observed that under acidic conditions (H3PO4), dissolution and then precipitation influences the crystal morphology and transition from plate like to rod like hydroxyapatite structure. During the first hour of the dissolution a monetite and hydroxyapatite mixture precipitates and then the full conversion to hydroxyapatite is observed. However under basic conditions (NH4)2HPO4), pH is only marginally changed within the environment and just surface conversion of the calcium carbonate structure of coral to hydroxyapatite and a very small amount of tri-calcium phosphate is observed. The mechanism can be classified as the solid state topotactic ion-exchange reaction mechanism

    3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering

    Get PDF
    Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (~300 µm) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engineering applications

    Nano-bioceramic synthesis from tropical sea snail shells (Tiger Cowrie - Cypraea Tigris) with simple chemical treatment

    Full text link
    In this study several bioceramic materials (i.e. hydroxyapatite, whitlockite) were prepared by using chemical synthesis method from sea snail shells (Tiger Cowrie - Cypraea Tigris), originated from Pacific Ocean. Marine shells usually present aragonite-calcite structures and generally, complicated and pressurized equipment is necessary to convert these structures into bioceramics. Instead of using complicated systems, a basic ultrasonic equipment and simple chemical synthesis method was used in the process. DTA analysis was performed to calculate the required amount of H3PO4 solution in order to set the appropriate stoichiometric ratio of Ca/P equal to 1.667 for HA bioceramic or to 1.5 for β-TCP bioceramic in the titration. The prepared batches were sintered at 800°C and 400 °C for hydroxyapatite (HA) and β-tri calcium phosphate (β-TCP) forms respectively. X-ray diffraction analysis, scanning electron microscopy (SEM) and infrared observations (FTIR) were implemented for both TCP and HA bioceramics. By applying the chemical synthesis with basic ultrasonic equipment, this study proposes a simple way of production for nano-HA/TCP powders from a natural marine sources

    Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/β-catenin pathway

    Get PDF
    Vitamin D3, vitamin K2, and Mg (10%, 1.25%, and 5%, w/w, respectively)-loaded PLA (12%, w/v) (TCP (5%, w/v))/PCL (12%, w/v) 1:1 (v/v) composite nanofibers (DKMF) were produced by electrospinning method (ES) and their osteoinductive effects were investigated in cell culture test. Neither pure nanofibers nor DKMF caused a significant cytotoxic effect in fibroblasts. The induction of the stem cell differentiation into osteogenic cells was observed in the cell culture with both DKMF and pure nanofibers, separately. Vitamin D3, vitamin K2, and magnesium demonstrated to support the osteogenic differentiation of mesenchymal stem cells by expressing Runx2, BMP2, and osteopontin and suppressing PPAR-γ and Sox9. Therefore, the Wnt/β-catenin signaling pathway was activated by DKMF. DKMF promoted large axonal sprouting and needle-like elongation of osteoblast cells and enhanced cellular functions such as migration, infiltration, proliferation, and differentiation after seven days of incubation using confocal laser scanning microscopy. The results showed that DKMF demonstrated sustained drug release for 144 h, tougher and stronger structure, higher tensile strength, increased water up-take capacity, decreased degradation ratio, and slightly lower Tm and Tg values compared to pure nanofibers. Consequently, DKMF is a promising treatment approach in bone tissue engineering due to its osteoinductive effects

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link
    corecore