143 research outputs found

    Taxonomy proposal 2019 : Rename the species in the family Pleolipoviridae

    Get PDF

    Three Phages from a Boreal Lake during Ice Cover Infecting Xylophilus, Caulobacter, and Polaromonas Species

    Get PDF
    Although the important role of microbes in freshwater is well understood, studies on phage–host systems in such environments during ice cover are completely lacking. Here, we describe the isolation and characterization of three new bacteriophages infecting Xylophilus sp., Caudobacter sp., and Polaromonas sp. from freshwater samples taken under the ice cover of Lake Konnevesi, Finland. Lumi, Kuura, and Tiera bacteriophages have tailed icosahedral virions and double-stranded DNA. Lumi is a siphophage with a genome of 80,496 bp, and Kuura and Tiera are podophages, and their genomes are 43,205 and 45,327 bp in length, resembling viruses in the class Caudoviricetes. Their host ranges were very limited among the winter-isolated bacterial strains from Konnevesi, each infecting only their own hosts. They can infect efficiently at 4 °C, showing that they are adapted to living in lake water under ice cover. Analysis of the viral genome sequences showed that a significant number of the gene products of each virus are unique, indicating that there is unexplored viral diversity in freshwaters. To our knowledge, Lumi and Tiera are the first phages isolated on the Xylophilus sp. and Polaromonas sp. strains, allowing their exploitation in further studies of freshwater bacterial–phage interactions

    Pleomorphic archaeal viruses: the family Pleolipoviridae is expanding by seven new species

    Get PDF
    Established in 2016, the familyPleolipoviridaecomprises globally distributed archaeal viruses that produce pleomorphic particles. Pseudo-spherical enveloped virions of pleolipoviruses are membrane vesicles carrying a nucleic acid cargo. The cargo can be either a single-stranded or double-stranded DNA molecule, making this group the first family introduced in the 10(th)Report on Virus Taxonomy including both single-stranded and double-stranded DNA viruses. The length of the genomes is approximately 7-17 kilobase pairs, or kilonucleotides in the case of single-stranded molecules. The genomes are circular single-stranded DNA, circular double-stranded DNA, or linear double-stranded DNA molecules. Currently, eight virus species and seven proposed species are classified in three genera:Alphapleolipovirus(five species), Betapleolipovirus(nine species), andGammapleolipovirus(one species). Here, we summarize the updated taxonomy of the familyPleolipoviridaeto reflect recent advances in this field, with the focus on seven newly proposed species in the genusBetapleolipovirus:Betapleolipovirus HHPV3, HHPV4, HRPV9, HRPV10, HRPV11, HRPV12, andSNJ2.Peer reviewe

    Asymmetrical Flow Field-Flow Fractionation on Virus and Virus-Like Particle Applications

    Get PDF
    Asymmetrical flow field-flow fractionation (AF4) separates sample components based on their sizes in the absence of a stationary phase. It is well suited for high molecular weight samples such as virus-sized particles. The AF4 experiment can potentially separate molecules within a broad size range (~103−109 Da; particle diameter from 2 nm to 0.5−1 ÎŒm). When coupled to light scattering detectors, it enables rapid assays on the size, size distribution, degradation, and aggregation of the studied particle populations. Thus, it can be used to study the quality of purified viruses and virus-like particles. In addition to being an advanced analytical characterization technique, AF4 can be used in a semi-preparative mode. Here, we summarize and provide examples on the steps that need optimization for obtaining good separation with the focus on virus-sized particles

    Asymmetrical Flow Field-Flow Fractionation on Virus and Virus-Like Particle Applications

    Get PDF
    Asymmetrical flow field-flow fractionation (AF4) separates sample components based on their sizes in the absence of a stationary phase. It is well suited for high molecular weight samples such as virus-sized particles. The AF4 experiment can potentially separate molecules within a broad size range (~103−109 Da; particle diameter from 2 nm to 0.5−1 ÎŒm). When coupled to light scattering detectors, it enables rapid assays on the size, size distribution, degradation, and aggregation of the studied particle populations. Thus, it can be used to study the quality of purified viruses and virus-like particles. In addition to being an advanced analytical characterization technique, AF4 can be used in a semi-preparative mode. Here, we summarize and provide examples on the steps that need optimization for obtaining good separation with the focus on virus-sized particles

    Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology

    Get PDF
    Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of “viral lineages”, postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection

    Archaeal host cell recognition and viral binding of HFTV1 to its Haloferax host

    Get PDF
    Viruses are highly abundant and the main predator of microorganisms. Microorganisms of each domain of life are infected by dedicated viruses. Viruses infecting archaea are genomically and structurally highly diverse. Archaea are undersampled for viruses in comparison with bacteria and eukaryotes. Consequently, the infection mechanisms of archaeal viruses are largely unknown, and most available knowledge stems from viruses infecting a select group of archaea, such as crenarchaea. We employed Haloferax tailed virus 1 (HFTV1) and its host, Haloferax gibbonsii LR2-5, to study viral infection in euryarchaea. We found that HFTV1, which has a siphovirus morphology, is virulent, and interestingly, viral particles adsorb to their host several orders of magnitude faster than most studied haloarchaeal viruses. As the binding site for infection, HFTV1 uses the cell wall component surface (S)-layer protein. Electron microscopy of infected cells revealed that viral particles often made direct contact with their heads to the cell surface, whereby the virion tails were perpendicular to the surface. This seemingly unfavorable orientation for genome delivery might represent a first reversible contact between virus and cell and could enhance viral adsorption rates. In a next irreversible step, the virion tail is orientated toward the cell surface for genome delivery. With these findings, we uncover parallels between entry mechanisms of archaeal viruses and those of bacterial jumbo phages and bacterial gene transfer agents.IMPORTANCE Archaeal viruses are the most enigmatic members of the virosphere. These viruses infect ubiquitous archaea and display an unusually high structural and genetic diversity. Unraveling their mechanisms of infection will shed light on the question if entry and egress mechanisms are highly conserved between viruses infecting a single domain of life or if these mechanisms are dependent on the morphology of the virus and the growth conditions of the host. We studied the entry mechanism of the tailed archaeal virus HFTV1. This showed that despite "typical" siphovirus morphology, the infection mechanism is different from standard laboratory models of tailed phages. We observed that particles bound first with their head to the host cell envelope, and, as such, we discovered parallels between archaeal viruses and nonmodel bacteriophages. This work contributes to a better understanding of entry mechanisms of archaeal viruses and a more complete view of microbial viruses in general.Archaeal viruses are the most enigmatic members of the virosphere. These viruses infect ubiquitous archaea and display an unusually high structural and genetic diversity.Peer reviewe
    • 

    corecore