9 research outputs found

    MICROBIAL FERMENTATION OF GRAIN RAW MATERIALS. PROSPECTS FOR FOOD TECHNOLOGY: AN ANALYTICAL REVIEW

    Get PDF
    The development of technologies for deep processing of grain raw materials in order to obtain functional biological products is the most important economic aspect of the development of the agro-industrial complex. Grain is a strategic resource for food security of each country, which at the same time has a great potential of the components it contains, which determines its widespread use, both in food technologies and in the biotechnological industry. Particular attention is paid to the development of highly efficient processing technologies for this type of raw material, which can be traced in a significant amount of scientific research in this area. The purpose of the analytical review is to research current approaches to the microbial processing of grain raw materials, studying the prospects for the application of these technologies for the food industry. During the analysis of scientific data, three information blocks were identified, reflecting the main directions of research in the field of enzymatic processing of grain raw materials. First, numerous studies have proved that grain processing products have a significant biotechnological potential-they are characterized by a high content of nitrogenous and prebiotic components, essential micronutrients, and therefore are a favorable substrate for the accumulation of biomass of lactic acid microorganisms and the production of functional components with probiotic properties. Secondly, fermentation is considered as an aspect for improving the nutritional and functional characteristics of the grain. Throughout the enzymatic processing, the molecular structure of the protein changes and its digestibility improves, the synthesis and accumulation of biologically valuable components is ensured. Under the action of the microbial enzymatic pool, biopolymers are transformed, and a wide range of biologically active compounds are accumulated, such as peptides, oligosaccharides with prebiotic potential, enzymes, and polyphenolic components. And finally, during the processing of grain crops, a large number of byproducts and waste products are formed, which are a source of natural polymers, dietary fibers, and micronutrients – and therefore can become a substrate for the growth of microbial biomass. By increasing the bioavailability of components and the decomposition of antinutrient substances, fermentation can improve the nutritional value of grain waste and by-products. Currently, effective technologies for deep processing of plant resources are associated with biotechnological methods, including microbiological fermentation of grain raw materials. The results of the analytical research formed the basis of the consolidated material, which reflects the biotechnological potential of grain raw materials

    Study of Water Binding Capacity, pH, Chemical Composition and Microstructure of Livestock Meat and Poultry

    Get PDF
    This paper shows the results of analysis of chemical composition, water binding capacity, pH and microstructure of maral meat, goat meat, lamb, and turkey meat. From the analysis, the high content of protein and ash is observed in turkey meat, fat prevails in lamb, and less amount in maral meat and goat meat. pH value lies between 5.7 (turkey white meat) and 6.4 (goat meat). Low value of water binding capacity is detected in turkey meat (58.2% in red meat, 59.2% in white meat) and high value – in maral meat 79.57%. The morphology and microstructure of meat have some differences in position and diameter of muscle fibers. Micrographic investigation shows that the largest diameter of muscle fibers was observed in turkey white meat (46.58 µm) and the smallest – in muscle tissue of lamb (29.92 µm). Obtained results will be useful for further processing and developing meat products

    Development of Minced Meatball Composition for the Population from Unfavorable Ecological Regions

    Get PDF
    In this paper, a new technology for meatball production is presented. The ingredients in the formulation used are low value parts of poultry meat (neck and back part), rice, sea cabbage (Laminaria) and carrot. Three variants of meatball were prepared with different weight ratios of Laminaria: variant 1 – 15%, variant 2 – 10% and variant 3 – 5%. The comparative quality and organoleptic indicators of meatballs are studied. As a result, when compared with the control meatballs, the developed meatballs have soft consistency, a pleasant flavor, better sensory characteristics and balanced composition. The highest level of protein was obtained in variant 2 (19.7%) while the lowest one was determined in the control sample (10.1%). Variant 2 meatball also showed an increased level of mineral elements – 3.11%, compared with variant 1 (2.6%) and variant 3 (1.6%). The moisture content of the developed meatballs varied from 67.1% to 69.3% and these values are much higher than in the control sample (61.64%). Also, the developed meatballs show a higher content of fat compared with the control sample. Different proportions of Laminaria in meatball formulations caused significant changes in content of I, Mg, K and Na. The concentrations of these elements were reduced when the Laminaria weight ratio in meatballs was lowered. Using Laminaria demonstrated a positive effect to the food quality of meatball

    Physicochemical, Functional, and Technological Properties of Protein Hydrolysates Obtained by Microbial Fermentation of Broiler Chicken Gizzards

    No full text
    Fermentation is an economical method for obtaining protein hydrolysates. The purpose of the scientific research was to perform a comprehensive analysis of the physicochemical, technological, and functional properties of protein hydrolysates obtained by microbial fermentation. The research results showed that hydrolysates fermented with propionic acid bacteria and bifidobacteria have better physicochemical and technological indicators compared to the control sample. Significant increases in water-holding and fat-holding capacities (by 1.8–2.1 times and 1.5–2.5 times, respectively), as well as fat-emulsifying ability (by 12.8–29.8%) in experimental samples were found. Hydrolysates obtained by fermentation effectively inhibit the growth of Escherichia coli and Staphylococcus aureus. The thermal analysis showed a sufficiently high-thermal stability of the obtained protein hydrolysates. In hydrolysates fermented by bacterial culture, the removal of physico-mechanical and osmotically bound moisture occurred at temperatures of 110 °C and 115 °C, respectively, and in whey protein hydrolysate at a temperature of 100 °C. The release of chemically bound moisture was observed at a temperature of 170 °C for fermented hydrolysates and at 155 °C for the control sample. The results proved that fermented protein products are characterized by high functional properties, antioxidant and antimicrobial activity, and can be used as natural food additives and preservatives

    Physicochemical, Functional, and Technological Properties of Protein Hydrolysates Obtained by Microbial Fermentation of Broiler Chicken Gizzards

    No full text
    Fermentation is an economical method for obtaining protein hydrolysates. The purpose of the scientific research was to perform a comprehensive analysis of the physicochemical, technological, and functional properties of protein hydrolysates obtained by microbial fermentation. The research results showed that hydrolysates fermented with propionic acid bacteria and bifidobacteria have better physicochemical and technological indicators compared to the control sample. Significant increases in water-holding and fat-holding capacities (by 1.8–2.1 times and 1.5–2.5 times, respectively), as well as fat-emulsifying ability (by 12.8–29.8%) in experimental samples were found. Hydrolysates obtained by fermentation effectively inhibit the growth of Escherichia coli and Staphylococcus aureus. The thermal analysis showed a sufficiently high-thermal stability of the obtained protein hydrolysates. In hydrolysates fermented by bacterial culture, the removal of physico-mechanical and osmotically bound moisture occurred at temperatures of 110 °C and 115 °C, respectively, and in whey protein hydrolysate at a temperature of 100 °C. The release of chemically bound moisture was observed at a temperature of 170 °C for fermented hydrolysates and at 155 °C for the control sample. The results proved that fermented protein products are characterized by high functional properties, antioxidant and antimicrobial activity, and can be used as natural food additives and preservatives

    Investigation of Microbial Hydrolysis of Hen Combs with Bacterial Concentrates

    No full text
    When slaughtering and processing poultry, large quantities of meat by-products are generated; therefore, the development of the newest methods for processing secondary raw materials is an urgent problem. Animal proteins have relevant technological applications and are also considered as a potential source of bioactive peptides. Current technologies suggested that protein substances can be isolated from meat co-products through microbial hydrolysis. The purpose of the study was to optimize the technological parameters of microbial hydrolysis of hen combs and to analyze the modification of the microstructure and properties of hydrolyzed by-products under the action of bacterial enzymes. Hen’s combs were hydrolyzed by bifidobacteria and concentrated Propionix liquid. A multifactorial experiment was used to determine the optimal conditions for the hydrolysis process. As a result of the study, multiple regression equations and response surfaces were obtained, which describe the process of hydrolysis of hen combs to identify the optimal hydrolysis parameters. Temperature, amount of bacterial concentrate and hydrolysis period are factors that have a significant impact on the degree of hydrolysis. The results of microscopic and dispersed analysis confirm the good hydrolyzability of combs due to changes in structural components and an increase in the amount of smaller protein particles

    Effects of Microbial Transglutaminase on Technological, Rheological, and Microstructural Indicators of Minced Meat with the Addition of Plant Raw Materials

    No full text
    The aim of the study was to analyse the effects of transglutaminase on the physicochemical, technological, rheological, and microstructural indicators of minced meat with the addition of plant raw materials. The formulations of minced meat from beef trimming, hemp protein, and flax flour were optimized in terms of biological value and optimal content of essential amino acids. The addition of plant components in amounts greater than 18% caused an increase in the content of protein, fat, and ash in the minced samples. The rheological properties of minced meat samples without enzyme treatment changed depending on the proportion of plant raw materials. When the content of the flax flour was increased, the minimum ultimate shear stress and viscosity were observed, while the maximum values for these indicators were achieved in samples containing about 15% hemp protein, as well as in samples without plant additives. When adding transglutaminase to the formulation, increases in the ultimate shear stress and viscosity were proven for all combined minced samples. The combined minces, containing flax flour, had a more plastic structure and the lowest modulus of elasticity, while minces including 14% hemp protein or more than 87% meat components were identical to the control samples in terms of deformation and elasticity. In enzyme-treated minces, the plasticity of the samples reduced while density and elasticity increased. Transglutaminase treatment contributed to the formation of optimal technological properties of combined minces. Microstructural analysis showed the intermolecular bonds between protein particles in combined minced samples with the addition of enzymes. The research results have demonstrated the effectiveness of using transglutaminase in the composition of combined minced meat for the formation of a homogeneous and dense system with the necessary technological and rheological properties

    Specificities of the DMD Gene Mutation Spectrum in Russian Patients

    No full text
    Duchenne/Becker muscular dystrophy (DMD/BMD) is the most common form of muscular dystrophy, accounting for over 50% of all cases. In this regard, in Russia we carry out a program of selective screening for DMD/BMD, which mainly involves male patients. The main inclusion criteria are an increase in the level of creatine phosphokinase (>2000 U/L) or an established clinical diagnosis. At the first stage of screening, patients are scanned for extended deletions and duplications in the DMD gene using multiplex ligase-dependent probe amplification (MLPA SALSA P034 and P035 DMD probemix, MRC-Holland). The second stage is the search for small mutations using a custom NGS panel, which includes 31 genes responsible for various forms of limb-girdle muscular dystrophy. In a screening of 1025 families with a referral Duchenne/Becker diagnosis, pathogenic and likely pathogenic variants in the DMD gene were found in 788 families (in 76.9% of cases). In the current study, we analyzed the mutation spectrum of the DMD gene in Russian patients and noted certain differences between the examined cohort and the multi-ethnic cohort. The analysis of the DMD gene mutation spectrum is essential for patients with DMD/BMD because the exact mutation type determines the application of a specific therapeutic method
    corecore