6 research outputs found

    Molecular epidemiology of hepatitis A outbreaks and sporadic cases, Latvia, 2017 to 2019

    Get PDF
    Background Hepatitis A is an acute infection of the liver caused by hepatitis A virus (HAV). Molecular detection and typing of the HAV VP1/P2A genomic region is used for genotyping and outbreak investigations. After a large hepatitis A outbreak in Latvia in 2007–08, only sporadic cases were registered until 2017 when a rise in cases occurred. During 2017–19, 179 laboratory-confirmed hepatitis A cases were notified in Latvia. Aim To investigate the observed increase in hepatitis A cases during 2017 and to determine whether these cases were linked to one another, to risk groups, or to other outbreaks. The majority of HAV samples (69.8%) were typed. Methods The VP1/P2A genomic region of HAV was amplified and sequenced for 125 case serum samples. Information about hepatitis-related symptoms, hospitalisation, vaccination, a possible source of infection and suspected countries of origin of the virus were analysed for sequenced cases. Results Most HAV strains were subgenotype IA (n = 77), of which 41 were strains circulating among men who have sex with men (MSM) populations in Europe (VRD_521_2016 (n = 32), RIVM-HAV16–090 (n = 7) or V16–25801 (n = 2)). Forty-four cases were subgenotype IB and four cases subgenotype IIIA. However, other clusters and sporadic cases were detected with or without identifying the epidemiological link. Conclusion This work represents molecular epidemiological data of hepatitis A cases in Latvia from 2017 to 2019. Molecular typing methods allow identification of clusters for public health needs and establishing links with other outbreaks, and to compare Latvian strains with reported strains from other countries.publishersversionPeer reviewe

    Hepatitis A virus subgenotypes in Latvia, 2008-2021

    Get PDF
    Funding Information: This research was carried out in accordance with the Declaration of Helsinki, as revised in 2013 [40]. Ethics Committees of Riga Stradins University (Reference: 4/08.09.2018), Riga East University Hospital (Reference: ZD/08–06/01–19/210) and Centre for Disease Prevention and Control of Latvia (Reference:6.1–3/8) approved the study. HAV cases were not directly involved in this study. Only data extracted from notifiable disease surveillance systems were used. All identifiable personal information was removed for privacy protection and therefore no informed consent was required. Publisher Copyright: © 2023 The Author(s)BACKGROUND: In Latvia outbreaks of the HAV were observed between 2008 and early 2010 and again in 2017-2018. However, the risks of introducing and spreading infection still exist, as the virus spreads easily when personal hygiene is not followed. METHODS: To determine the spread of HAV subgenotypes in the territory of Latvia the VP1/P2A genomic region of HAV was amplified and sequenced for 259 case serum samples. The study carried out a molecular biological investigation and molecular epidemiological investigation. Demographic data (sex, age), disease data (hepatitis symptoms, hospitalization, vaccination) and epidemiology data (part of the outbreak, possible source of infection, recent travel) were collected. Based on the obtained sequences, the phylogenetic tree was built and analyzed for the homology and belonging to different isolated HAV clusters from other countries. RESULTS: From the obtained data, it was concluded that HAV subgenotype IA had 13 clusters and 12 sporadic cases, HAV subgenotype IB had eight clusters and 11 sporadic cases, HAV subgenotype IIIA had one cluster and nine sporadic cases. It was found that the sources of infection among the investigated cases were different, they were mostly associated with contact with a patient with HAV, travel, as well as between persons who inject drugs and men who have sex with men, and the prevalence of HAV similar sequences was observed in different years. It was concluded that patients with HAV subgenotype IA had the longest hospitalization duration and averaged 9.3 days, while patients with subgenotype IB - 7.3 days, subgenotype IIIA - 7.7 days. Analyzing the data on vaccination, it was found that mostly all were not vaccinated or had an unknown vaccination status. CONCLUSIONS: All of this has led to the conclusion that the application of molecular biological methods of the HAV and a careful analysis of epidemiological data can help to better understand the ways of spreading the infection, investigate local outbreaks, detect cases of imported infection and track the recirculation of the virus.Peer reviewe

    First Report on the Latvian SARS-CoV-2 Isolate Genetic Diversity

    Get PDF
    Copyright © 2021 Zrelovs, Ustinova, Silamikelis, Birzniece, Megnis, Rovite, Freimane, Silamikele, Ansone, Pjalkovskis, Fridmanis, Vilne, Priedite, Caica, Gavars, Perminov, Storozenko, Savicka, Dimina, Dumpis and Klovins.Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.publishersversionPeer reviewe

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Multiplexed RT-qPCR Coupled with Whole-Genome Sequencing to Monitor a SARS-CoV-2 Omicron Variant of Concern in a Hospital Laboratory Setting in Latvia

    No full text
    At the end of 2021, the SARS-CoV-2 Omicron variant of concern (VOC) displaced the previously dominant Delta VOC and enhanced diagnostic and therapeutic challenges worldwide. Respiratory specimens submitted to the Riga East University Hospital Laboratory Service by the central and regional hospitals of Latvia from January to March 2022 that were positive for SARS-CoV-2 RNA were tested by commercial multiplexed RT-qPCR targeting three of the Omicron VOC signature mutations: ΔH69/V70, E484A, and N501Y. Of the specimens tested and analyzed in parallel by whole-genome sequencing (WGS), 964 passed the internal quality criteria (genome coverage ≥90%, read depth ≥400×) and the Nextstrain’s quality threshold for “good”. We validated the detection accuracy of RT-qPCR for each target individually by using WGS as a control. The results were concordant with both approaches for 938 specimens, with the correct classification rate exceeding 96% for each target (CI 95%); however, the presumptive WHO label was misassigned for 21 specimens. The RT-qPCR genotyping provided an acceptable means to pre-monitor the prevalence of the two presumptive Omicron VOC sublineages, BA.1 and BA.2

    Survey on the Use of Whole-Genome Sequencing for Infectious Diseases Surveillance: Rapid Expansion of European National Capacities, 2015–2016

    No full text
    Whole-genome sequencing (WGS) has become an essential tool for public health surveillance and molecular epidemiology of infectious diseases and antimicrobial drug resistance. It provides precise geographical delineation of spread and enables incidence monitoring of pathogens at genotype level. Coupled with epidemiological and environmental investigations, it delivers ultimate resolution for tracing sources of epidemic infections. To ascertain the level of implementation of WGS-based typing for national public health surveillance and investigation of prioritized diseases in the European Union (EU)/European Economic Area (EEA), two surveys were conducted in 2015 and 2016. The surveys were designed to determine the national public health reference laboratories’ access to WGS and operational WGS-based typing capacity for national surveillance of selected foodborne pathogens, antimicrobial-resistant pathogens, and vaccine-preventable diseases identified as priorities for European genomic surveillance. Twenty-eight and twenty-nine out of the 30 EU/EEA countries participated in the survey in 2015 and 2016, respectively. National public health reference laboratories in 22 and 25 countries had access to WGS-based typing for public health applications in 2015 and 2016, respectively. Reported reasons for limited or no access were lack of funding, staff, and expertise. Illumina technology was the most frequently used followed by Ion Torrent technology. The access to bioinformatics expertise and competence for routine WGS data analysis was limited. By mid-2016, half of the EU/EEA countries were using WGS analysis either as first- or second-line typing method for surveillance of the pathogens and antibiotic resistance issues identified as EU priorities. The sampling frame as well as bioinformatics analysis varied by pathogen/resistance issue and country. Core genome multilocus allelic profiling, also called cgMLST, was the most frequently used annotation approach for typing bacterial genomes suggesting potential bioinformatics pipeline compatibility. Further capacity development for WGS-based typing is ongoing in many countries and upon consolidation and harmonization of methods should enable pan-EU data exchange for genomic surveillance in the medium-term subject to the development of suitable data management systems and appropriate agreements for data sharing
    corecore