5 research outputs found

    2-Form Gravity of the Lorentzian Signature

    Get PDF
    We introduce a new spinorial, BF-like action for the Einstein gravity. This is a first, up to our knowledge, 2-form action which describes the real, Lorentzian gravity and uses only the self-dual connection. In the generic case, the corresponding classical canonical theory is equivalent to the Einstein-Ashtekar theory plus the reality conditions

    On the structure of the space of generalized connections

    Full text link
    We give a modern account of the construction and structure of the space of generalized connections, an extension of the space of connections that plays a central role in loop quantum gravity.Comment: 30 pages, added references, minor changes. To appear in International Journal of Geometric Methods in Modern Physic

    Background Independent Quantum Gravity: A Status Report

    Full text link
    The goal of this article is to present an introduction to loop quantum gravity -a background independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the article should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the article is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the article to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.Comment: 125 pages, 5 figures (eps format), the final version published in CQ

    Diffeomorphism covariant representations of the holonomy-flux star-algebra

    Full text link
    Recently, Sahlmann proposed a new, algebraic point of view on the loop quantization. He brought up the issue of a star-algebra underlying that framework, studied the algebra consisting of the fluxes and holonomies and characterized its representations. We define the diffeomorphism covariance of a representation of the Sahlmann algebra and study the diffeomorphism covariant representations. We prove they are all given by Sahlmann's decomposition into the cyclic representations of the sub-algebra of the holonomies by using a single state only. The state corresponds to the natural measure defined on the space of the generalized connections. This result is a generalization of Sahlmann's result concerning the U(1) case.Comment: 37 pages, no figures, LaTeX2e, to be published in Class. Quant. Grav; typos corrected, minor clarifying remark
    corecore