30 research outputs found

    Destruxin E Decreases Beta-Amyloid Generation by Reducing Colocalization of Beta-Amyloid-Cleaving Enzyme 1 and Beta-Amyloid Protein Precursor

    Get PDF
    Alzheimer-disease-associated beta-amyloid (A beta) is produced by sequential endoproteolysis of beta-amyloid protein precursor (beta APP): the extracellular portion is shed by cleavage in the juxtamembrane region by beta-amyloid-cleaving enzyme (BACE)/beta-secretase, after which it is cleaved by presenilin (PS)/gamma-secretase near the middle of the transmembrane domain. Thus, inhibition of either of the secretases reduces A beta generation and is a fundamental strategy for the development of drugs to prevent Alzheimer disease. However, it is not clear how small compounds reduce A beta production without inhibition of the secretases. Such compounds are expected to avoid some of the side effects of secretase inhibitors. Here, we report that destruxin E (Dx-E), a natural cyclic hexadepsipeptide, reduces A beta generation without affecting BACE or PS/gamma-secretase activity. In agreement with this, Dx-E did not inhibit Notch signaling. We found that Dx-E decreases colocalization of BACE1 and beta APP, which reduces beta-cleavage of beta APP. Therefore, the data demonstrate that Dx-E represents a novel A beta-reducing process which could have fewer side effects than secretase inhibitors. Copyright (C) 2009 S. Karger AG, Base

    Laughter and humor as complementary and alternative medicines for dementia patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of dementia patients has increased worldwide, with an estimated 13.7 million dementia patients in the Asia Pacific region alone. This number is expected to increase to 64.6 million by the year 2050.</p> <p>Discussion</p> <p>As a result of advances in research, there several pharmacological therapies available for the treatment of dementia patients. However, current treatments do not suppress the disease process and cannot prevent dementia, and it will be some time before these goals are realized. In the meantime, complementary and alternative medicine (CAM) is an important aspect in the treatment of dementia patients to improve their quality of life throughout the long course of the disease. Considering the individuality of dementia patients, applicability of laughter and humor therapy is discussed. Even though there are many things that need to be elucidated regarding the mechanisms underlying the beneficial effects of laughter and humor, both may be good CAM for dementia patients if they are applied carefully and properly.</p> <p>Summary</p> <p>In this debate article, the physiological basis and actual application of laughter and humor in the treatment of dementia patients are presented for discussion on the applicability to dementia patients.</p

    γ-Secretase Modulators and Presenilin 1 Mutants Act Differently on Presenilin/γ-Secretase Function to Cleave Aβ42 and Aβ43

    Get PDF
    Deciphering the mechanism by which the relative Aβ42(43) to total Aβ ratio is regulated is central to understanding Alzheimer disease (AD) etiology; however, the mechanisms underlying changes in the Aβ42(43) ratio caused by familial mutations and γ-secretase modulators (GSMs) are unclear. Here, we show in vitro and in living cells that presenilin (PS)/γ-secretase cleaves Aβ42 into Aβ38, and Aβ43 into Aβ40 or Aβ38. Approximately 40% of Aβ38 is derived from Aβ43. Aβ42(43) cleavage is involved in the regulation of the Aβ42(43) ratio in living cells. GSMs increase the cleavage of PS/γ-secretase-bound Aβ42 (increase kcat) and slow its dissociation from the enzyme (decrease kb), whereas PS1 mutants and inverse GSMs show the opposite effects. Therefore, we suggest a concept to describe the Aβ42(43) production process and propose how GSMs act, and we suggest that a loss of PS/γ-secretase function to cleave Aβ42(43) may initiate AD and might represent a therapeutic target

    Presenilins mediate a dual intramembranous γ-secretase cleavage of Notch-1

    No full text
    Following ectodomain shedding, Notch-1 undergoes presenilin (PS)-dependent constitutive intramembranous endoproteolysis at site-3. This cleavage is similar to the PS-dependent γ-secretase cleavage of the β-amyloid precursor protein (βAPP). However, topological differences in cleavage resulting in amyloid β-peptide (Aβ) or the Notch-1 intracellular domain (NICD) indicated independent mechanisms of proteolytic cleavage. We now demonstrate the secretion of an N-terminal Notch-1 Aβ-like fragment (Nβ). Analysis of Nβ by MALDI-TOF MS revealed that Nβ is cleaved at a novel site (site-4, S4) near the middle of the transmembrane domain. Like the corresponding cleavage of βAPP at position 40 and 42 of the Aβ domain, S4 cleavage is PS dependent. The precision of this cleavage is affected by familial Alzheimer’s disease-associated PS1 mutations similar to the pathological endoproteolysis of βAPP. Considering these similarities between intramembranous processing of Notch and βAPP, we conclude that these proteins are cleaved by a common mechanism utilizing the same protease, i.e. PS/γ-secretase
    corecore