4 research outputs found
Antibodies to cyclic citrullinated protein and erythrocyte sedimentation rate predict hand bone loss in patients with rheumatoid arthritis of short duration: a longitudinal study
Introduction
Radiographic progression in rheumatoid arthritis (RA) has in several studies been shown to be predicted by serological markers widely used in daily clinical practice. The objective of this longitudinal study was to examine if these serological markers also predict hand bone mineral density (BMD) loss in patients with RA of short disease duration.
Methods
163 patients with RA of short disease duration (2.4 years) were included and followed longitudinally. Antibodies to cyclic citrullinated protein (anti-CCP), rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) were analysed from baseline blood-samples. Hand BMD was measured by digital X-ray radiogrammetry (DXR) based on hand and wrist radiographs obtained at baseline and 1, 2 and 5-year follow-up.
Results
During the study period, DXR-BMD decreased by median (inter quartile range) 1.7% (4.1 to 0.4), 2.8% (5.3 to 0.9) and 5.6% (11.7 to 2.3) after 1, 2 and 5 years, respectively. Elevated baseline anti-CCP, RF, ESR and CRP levels were in univariate linear regression analyses consistently associated with DXR-BMD change at all time-points. Anti-CCP and ESR were independently associated with hand DXR-BMD in multivariate linear regression analyses. Elevated anti-CCP levels were consistent and independent predictors of loss in cortical hand bone during the study period, with the odds ratios (95% confidence interval) 2.2 (1.0 to 4.5), 2.6 (1.1 to 6.2) and 4.9 (1.4 to 16.7) for the 1, 2, and 5-year follow-up periods, respectively.
Conclusions
Anti-CCP and ESR were found to be independent predictors of early localised BMD loss. This finding adds to the understanding of anti-CCP and ESR as important predictors of bone involvement in RA
The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors
The recently cloned murine flt3 ligand (FL) was studied for its ability to stimulate the growth of primitive (Lin-Sca-1+) and more committed (Lin-Sca-1-) murine bone marrow progenitor cells, alone and in combination with other hematopoietic growth factors (HGFs). Whereas FL was a weak proliferative stimulator alone, it potently synergized with a number of other HGFs, including all four colony-stimulating factor (CSF), interleukin (IL) 6, IL-11, IL-12, and stem cell factor (SCF), to promote the colony formation of Lin-Sca-1+, but not Lin-Sca-1- or erythroid progenitor cells. The synergistic activity of FL was concentration dependent, with maximum stimulation occurring at 250 ng/ml, and was observed when cells were plated at a concentration of one cell per culture, suggesting that its effects are directly mediated. 2 wk of treatment with FL in combination with IL-3 or SCF resulted in the production of a high proportion of mature myeloid cells (granulocytes and macrophages), whereas the combination of FL with G- CSF, IL-11, or IL-12 resulted predominantly in the formation of cells with an immature blast cell appearance. Accordingly, FL in combination with G-CSF or IL-11 expanded the number of progenitors more than 40- fold after 2 wk incubation. Thus, FL emerges as a potent synergistic HGF, that in combination with numerous other HGFs, can directly stimulate the proliferation, myeloid differentiation, and expansion of primitive hematopoietic progenitor cells