18 research outputs found

    In Situ Kinase Profiling Reveals Functionally Relevant Properties of Native Kinases

    Get PDF
    SummaryProtein kinases are intensely studied mediators of cellular signaling, yet important questions remain regarding their regulation and in vivo properties. Here, we use a probe-based chemoprotemics platform to profile several well studied kinase inhibitors against >200 kinases in native cell proteomes and reveal biological targets for some of these inhibitors. Several striking differences were identified between native and recombinant kinase inhibitory profiles, in particular, for the Raf kinases. The native kinase binding profiles presented here closely mirror the cellular activity of these inhibitors, even when the inhibition profiles differ dramatically from recombinant assay results. Additionally, Raf activation events could be detected on live cell treatment with inhibitors. These studies highlight the complexities of protein kinase behavior in the cellular context and demonstrate that profiling with only recombinant/purified enzymes can be misleading

    Attomole-Level Protein Fingerprinting Based on Intrinsic Peptide Fluorescence

    No full text

    Multiphoton-Excited Serotonin Photochemistry

    No full text
    We report photochemical and photophysical studies of a multiphoton-excited reaction of serotonin that previously has been shown to generate a photoproduct capable of emitting broadly in the visible spectral region. The current studies demonstrate that absorption of near-infrared light by an intermediate state prepared via three-photon absorption enhances the photoproduct formation yield, with the largest action cross sections (∼10(−19) cm(2)) observed at the short-wavelength limit of the titanium:sapphire excitation source. The intermediate state is shown to persist for at least tens of nanoseconds and likely to be different from a previously reported oxygen-sensitive intermediate. In addition, the two-photon fluorescence action spectrum for the fluorescent photoproduct was determined and found to have a maximum at ∼780 nm (3.2 eV). A general mechanism for this photochemical process is proposed

    Monitoring Native p38α:MK2/3 Complexes via Trans Delivery of an ATP Acyl Phosphate Probe

    No full text
    Here we describe a chemical proteomics strategy using ATP acyl phosphates to measure the formation of a protein:protein complex between p38α and mapkap kinases 2 and/or 3. Formation of the protein:protein complex results in a new probe labeling site on p38α that can be used to quantify the extent of interaction in cell lysates and the equilibrium binding constant for the interaction in vitro. We demonstrate through RNA interference that the labeling site is dependent on formation of the protein:protein complex in cells. Further, we identify that active-site-directed, small-molecule inhibitors of MK2/3 selectively inhibit the heterodimer-dependent probe labeling, whereas p38α inhibitors do not. These findings afford a new method to evaluate p38α and MK2/3 inhibitors within native biological systems and a new tool for improved understanding of p38α signaling pathways
    corecore