69 research outputs found

    A deep brain photoreceptive molecule in the toad hypothalamus

    Get PDF
    AbstractWe have isolated a cDNA clone encoding a deep brain photoreceptive molecule from the hypothalamic cDNA library of the toad, Bufo japonicus. The deduced amino acid sequence showed the highest similarity to that of pinopsin (75–76%) among vertebrate retinal opsins, indicating the expression of toad pinopsin in the deep brain. Antibodies raised against the C-terminal tail of toad pinopsin stained cell bodies and the knob-like structures of the cerebrospinal fluid-contacting neurons in the anterior preoptic nucleus. This region is known to play an important role in breeding behavior, suggesting that toad pinopsin acts as a photosensor for the photoperiodic gonadal response

    The Japan Monkey Centre Primates Brain Imaging Repository of high-resolution postmortem magnetic resonance imaging: the second phase of the archive of digital records

    Get PDF
    超高磁場MRIで見る霊長類「全脳」神経回路の多様性 --分野横断型の霊長類脳標本画像リポジトリ:ヒト脳と精神・神経疾患の理解を加速する国際研究基盤--. 京都大学プレスリリース. 2023-05-22.A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had been used as subjects in experiments, it is essential to investigate various species of nonhuman primates in order to elucidate and interpret the diversity of neuroanatomy features among humans and nonhuman primates. To develop a research platform for this purpose, it is necessary to harmonize the scientific contributions of studies with the standards of animal ethics, animal welfare, and the conservation of brain information for long-term continuation of the field. In previous research, we first developed a gated data-repository of anatomical images obtained using 9.4-T ex vivo MRI of postmortem brain samples from 12 nonhuman primate species, and which are stored at the Japan Monkey Centre. In the present study, as a second phase, we released a collection of T2-weighted images and diffusion tensor images obtained in nine species: white-throated capuchin, Bolivian squirrel monkey, stump-tailed macaque, Tibet monkey, Sykes’ monkey, Assamese macaque, pig-tailed macaque, crested macaque, and chimpanzee. Our image repository should facilitate scientific discoveries in the field of comparative neuroscience. This repository can also promote animal ethics and animal welfare in experiments with nonhuman primate models by optimizing methods for in vivo and ex vivo MRI scanning of brains and supporting veterinary neuroradiological education. In addition, the repository is expected to contribute to conservation, preserving information about the brains of various primates, including endangered species, in a permanent digital form

    Farnesylation of Retinal Transducin Underlies Its Translocation during Light Adaptation

    Get PDF
    SummaryG proteins are posttranslationally modified by isoprenylation: either farnesylation or geranylgeranylation. The γ subunit of retinal transducin (Tα/Tβγ) is selectively farnesylated, and the farnesylation is required for light signaling mediated by transducin in rod cells. However, whether and how this selective isoprenylation regulates cellular functions remain poorly understood. Here we report that knockin mice expressing geranylgeranylated Tγ showed normal rod responses to dim flashes under dark-adapted conditions but exhibited impaired properties in light adaptation. Of note, geranylgeranylation of Tγ suppressed light-induced transition of Tβγ from membrane to cytosol, and also attenuated its light-dependent translocation from the outer segment to the inner region, an event contributing to retinal light adaptation. These results indicate that, while the farnesylation of transducin is interchangeable with the geranylgeranylation in terms of the light signaling, the selective farnesylation is important for visual sensitivity regulation by providing sufficient but not excessive membrane anchoring of Tβγ

    Operation strategy by target species on offshore purse seine fisheries in the western waters of Japan

    Get PDF
    東京海洋大学海洋科学部海洋生物資源学科東京海洋大学海洋科学部海洋生物資源学科山二漁業有限会社財団法人漁場油濁被害救済基金西日本魚市株式会社西日本魚市株式会

    Seasonal patterns of fishing ground by target species on offshore purse seine fisheries in the western waters of Japan

    Get PDF
    東京海洋大学海洋科学部海洋生物資源学科東京海洋大学海洋科学部海洋生物資源学科山二漁業有限会社財団法人漁場油濁被害救済基金西日本魚市株式会社西日本魚市株式会

    Cryptochrome Genes Are Highly Expressed in the Ovary of the African Clawed Frog, Xenopus tropicalis

    Get PDF
    Cryptochromes (CRYs) are flavoproteins sharing high homology with photolyases. Some of them have function(s) including transcription regulation in the circadian clock oscillation, blue-light photoreception for resetting the clock phase, and light-dependent magnetoreception. Vertebrates retain multiple sets of CRY or CRY-related genes, but their functions are yet unclear especially in the lower vertebrates. Although CRYs and the other circadian clock components have been extensively studied in the higher vertebrates such as mice, only a few model species have been studied in the lower vertebrates. In this study, we identified two CRYs, XtCRY1 and XtCRY2 in Xenopus tropicalis, an excellent experimental model species. Examination of tissue specificity of their mRNA expression by real-time PCR analysis revealed that both the XtCRYs showed extremely high mRNA expression levels in the ovary. The mRNA levels in the ovary were about 28-fold (XtCry1) and 48-fold (XtCry2) higher than levels in the next abundant tissues, the retina and kidney, respectively. For the functional analysis of the XtCRYs, we cloned circadian positive regulator XtCLOCK and XtBMAL1, and found circadian enhancer E-box in the upstream of XtPer1 gene. XtCLOCK and XtBMAL1 exhibited strong transactivation from the XtPer1 E-box element, and both the XtCRYs inhibited the XtCLOCK:XtBMAL1-mediated transactivation, thereby suggesting this element to drive the circadian transcription. These results revealed a conserved main feedback loop in the X. tropicalis circadian clockwork and imply a possible physiological importance of CRYs in the ovarian functions such as synthesis of steroid hormones and/or control of estrus cycles via the transcription regulation

    Surgical Outcomes of Posterior Short Segment Fixation for Thoracolumbar Burst Fractures: A Study of Patients Treated without Vertebroplasty

    Get PDF
    There is no widespread agreement regarding the treatment of thoracolumbar burst fractures. While performing posterior short segment fixation of thoracolumbar burst fractures, we evaluated therapeutic outcomes in patients treated with screw insertion into fractured vertebral bodies without vertebroplasty. We also investigated the limitations associated with the treatment of burst fractures when vertebroplasty is not performed. Twenty-one of 51 patients with thoracolumbar burst fractures who were treated surgically in Ohta Nishinouchi Hospital were evaluated in the present study. These patients underwent posterior short segment fixation with screw insertion into the fractured vertebral bodies (only pedicle screws were inserted one level above and one level below the fractured vertebral bodies) without vertebroplasty. Vertebral angles were measured before surgery, immediately after surgery, and at the final follow-up examination. Changes in vertebral angles were compared and analyzed. The mean vertebral angles before and after surgery and at the final follow-up examination were 15.4°, 6.6°, and 9.1°, respectively. The mean postoperative correction loss was 2.5°. The therapeutic outcomes of posterior short segment fixation with screw insertion into fractured vertebral bodies without vertebroplasty were generally favorable

    Gene Therapy for Neuropathic Pain through siRNA-IRF5 Gene Delivery with Homing Peptides to Microglia.

    Get PDF
    Astrocyte- and microglia-targeting peptides were identified and isolated using phage display technology. A series of procedures, including three cycles of both in vivo and in vitro biopanning, was performed separately in astrocytes and in M1 or M2 microglia,yielding 50-58 phage plaques in each cell type. Analyses of the sequences of this collection identified one candidate homing peptide targeting astrocytes (AS1[C-LNSSQPS-C]) and two candidate homing peptides targeting microglia (MG1[C-HHSSSAR-C] and MG2[C-NTGSPYE-C]). To determine peptide specificity for the target cell in vitro, each peptide was synthesized and introduced into the primary cultures of astrocytes or microglia. Those peptides could bind to the target cells and be selectively taken up by the corresponding cell, namely, astrocytes, M1 microglia, or M2 microglia. To confirm cell-specific gene delivery to M1 microglia, the complexes between peptide MG1 and siRNA-interferon regulatory factor 5 were prepared and intrathecally injected into a mouse model of neuropathic pain. The complexes successfully suppressed hyperalgesia with high efficiency in this neuropathic pain model. Here, we describe a novel gene therapy for the treatment neuropathic pain, which has a high potential to be of clinical relevance. This strategy will ensure the targeted delivery of therapeutic genes while minimizing side effects to non-target tissues or cells

    Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets

    Get PDF
    Addressing the problem of vascularization is of vital importance when engineering three-dimensional (3D) tissues. Endothelial cells are increasingly used in tissue-engineered constructs to obtain prevascularization and to enhance in vivo neovascularization. Rat bone marrow stromal cells were cultured in thermoresponsive dishes under osteogenic conditions with human umbilical vein endothelial cells (HUVECs) to obtain homotypic or heterotypic cell sheets (CSs). Cells were retrieved as sheets from the dishes after incubation at 20 °C. Monoculture osteogenic CSs were stacked on top of homotypic or heterotypic CSs, and subcutaneously implanted in the dorsal flap of nude mice for 7 days. The implants showed mineralized tissue formation under both conditions. Transplanted osteogenic cells were found at the new tissue site, demonstrating CS bone-inductive effect. Perfused vessels, positive for human CD31, confirmed the contribution of HUVECs for the neovascularization of coculture CS constructs. Furthermore, calcium quantification and expression of osteocalcin and osterix genes were higher for the CS constructs, with HUVECs demonstrating the more robust osteogenic potential of these constructs. This work demonstrates the potential of using endothelial cells, combined with osteogenic CSs, to increase the in vivo vascularization of CS-based 3D constructs for bone tissue engineering purposes.We would like to acknowledge Mariana T Cerqueira for the illustration in Figure 1. This study was supported by Formation of Innovation Center for Fusion of Advanced Technologies in the Special Coordination Funds for Promoting Science and Technology 'Cell Sheet Tissue Engineering Center (CSTEC)' and the Global CUE program, the Multidisciplinary Education and Research Center for Regenerative Medicine (MERCREM), from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Financial support to RP Pirraco by the Portuguese Foundation for Science and Technology (FCT) through the PhD Grant SFRH/BD/44893/2008 is also acknowledged
    corecore