34 research outputs found

    Hybrid Neurons in a MicroRNA Mutant Are Putative Evolutionary Intermediates in Insect CO_2 Sensory Systems

    Get PDF
    Carbon dioxide (CO_2) elicits different olfactory behaviors across species. In Drosophila, neurons that detect CO_2 are located in the antenna, form connections in a ventral glomerulus in the antennal lobe, and mediate avoidance. By contrast, in the mosquito these neurons are in the maxillary palps (MPs), connect to medial sites, and promote attraction. We found in Drosophila that loss of a microRNA, miR-279, leads to formation of CO_2 neurons in the MPs. miR-279 acts through down-regulation of the transcription factor Nerfin-1. The ectopic neurons are hybrid cells. They express CO_2 receptors and form connections characteristic of CO_2 neurons, while exhibiting wiring and receptor characteristics of MP olfactory receptor neurons (ORNs). We propose that this hybrid ORN reveals a cellular intermediate in the evolution of species-specific behaviors elicited by CO_2

    Identification of functional elements and regulatory circuits by Drosophila modENCODE

    Get PDF
    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation

    Hidden sequence specificity in loading of single-stranded RNAs onto Drosophila Argonautes

    No full text
    Argonaute proteins play important roles in gene regulation with small RNAs (sRNAs) serving as guides to targets. Argonautes are believed to bind sRNAs in a sequence non-specific manner. However, we recently discovered that Argonautes selectively load endogenous single-stranded (ss) RNAs, suggesting that Argonaute loading may conform to sequence specificity. To identify sequences preferred for Argonaute loading, we have developed HIgh-throughput Sequencing mediated Specificity Analysis (HISSA). HISSA allows massively parallel analysis of RNA binding efficiency by using randomized oligos in in vitro binding assays and quantifying RNAs by deep-sequencing. We chose Drosophila as a model system to take advantage of the presence of two biochemically distinct Argonautes, AGO1 and AGO2. Our results revealed AGO2 loading to be strongly favored by G-rich sequences. In contrast, AGO1 showed an enrichment of the ‘GAC’ motif in loaded species. Reanalysis of published sRNA sequencing data from fly tissues detected enrichment of the GAC motif in ssRNA-derived small RNAs in the immunopurified AGO1-complex under certain conditions, suggesting that the sequence preference of AGO1-loading may influence the repertoire of AGO1-bound endogenous sRNAs. Finally, we showed that human Ago2 also exhibited selectivity in loading ssRNAs in cell lysates. These findings may have implications for therapeutic ssRNA-mediated gene silencing.NRF (Natl Research Foundation, S’pore)Published versio

    Regulatory RNAs discovered in unexpected places

    No full text
    Recent studies have discovered both small and long noncoding RNAs (ncRNAs) encoded in unexpected places. These ncRNA genes were surprises at the time of their discovery, but many quickly became well-accepted families of functional regulatory RNA species. Even after years of extensive gene annotation studies using high-throughput sequencing technologies, new types of ncRNA genes continue to be discovered in unexpected places. We highlight ncRNAs that have atypical structures and that are encoded in what are generally considered 'junk' sequences, such as spacers and introns. We also discuss current bottlenecks in the approaches for identifying novel ncRNAs and the possibility that many remain to be discovered.NRF (Natl Research Foundation, S’pore)Accepted versio

    Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways

    No full text
    In mammalian cells, both microRNAs (miRNAs) and small interfering RNAs (siRNAs) are thought to be loaded into the same RNA-induced silencing complex (RISC), where they guide mRNA degradation or translation silencing depending on the complementarity of the target. In Drosophila, Argonaute2 (AGO2) was identified as part of the RISC complex. Here we show that AGO2 is an essential component for siRNA-directed RNA interference (RNAi) response and is required for the unwinding of siRNA duplex and in consequence assembly of siRNA into RISC in Drosophila embryos. However, Drosophila embryos lacking AGO2, which are siRNA-directed RNAi-defective, are still capable of miRNA-directed target RNA cleavage. In contrast, Argonaute1 (AGO1), another Argonaute protein in fly, which is dispensable for siRNA-directed target RNA cleavage, is required for mature miRNA production that impacts on miRNA-directed RNA cleavage. The association of AGO1 with Dicer-1 and pre-miRNA also suggests that AGO1 is involved in miRNA biogenesis. Our findings show that distinct Argonaute proteins act at different steps of the small RNA silencing mechanism and suggest that there are inherent differences between siRNA-initiated RISCs and miRNA-initiated RISCs in Drosophila

    Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila

    No full text
    Heterochromatin protein 1a (HP1a) is thought to function downstream of transposon repression in the Drosophila female germline. Here the authors show that HP1a also functions upstream of piRNA processing by repressing splicing of piRNA precursors, predominantly at telomeric and centromeric regions
    corecore