313 research outputs found

    Increase of Residential Electricity Consumption in Urban and Rural China by Province

    Get PDF
    We have developed a projection model to investigate the inter-regional and intra-regional urban-rural characteristics of the current residential electricity demand in China. We have specifically focused on residential electricity demand pertaining to three major appliances; refrigerator, color-TVs and air-conditioners for cooling. The model integrates factors such as population and income growth, and urban-rural disparity of individual factors are also reflected. The relationship between income growth and appliance penetration is investigated and future residential electricity demand is projected for urban and rural areas of individual province. We postulated three scenarios i.e. 1) Base Line scenario 2) Rural Growth Scenario 3) Energy EfficiencySc enario by 2020 and conducted scenario analysis. The Base Line case projected that the total urban REC will approximately triple and the total rural REC will almost five times by 2020. The expected population growth and falling household membership will increase urban REC, whereas the penetration increase is the main driving force for rural REC growth. The Rural Growth Scenario resulted in the largest total REC among all Scenarios, suggesting rural growth plays a key role in determining the future REC in China.Resource /Energy Economics and Policy,

    The role of glucocorticoid receptors in the induction and prevention of hippocampal abnormalities in an animal model of posttraumatic stress disorder

    Get PDF
    Rationale: Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Numerous clinical studies have led to the hypothesis that elevated glucocorticoid levels in response to extreme stress might trigger a pathophysiological cascade which consequently leads to functional and morphological changes in the hippocampus. Objectives: To elucidate the pathophysiology of PTSD, we examined the alteration of hippocampal gene expression through the glucocorticoid receptor (GR) in the single prolonged stress (SPS) paradigm, a rat model of PTSD. Methods: We measured nuclear GRs by western blot, and the binding of GR to the promoter of Bcl-2 and Bax genes by chromatin immunoprecipitation-qPCR as well as the expression of these 2 genes by RT-PCR in the hippocampus of SPS rats. In addition, we examined the preventive effects of a GR antagonist on SPS-induced molecular, morphological, and behavioral alterations (hippocampal gene expression of Bcl-2 and Bax, hippocampal apoptosis using TUNEL staining, impaired fear memory extinction (FME) using the contextual fear conditioning paradigm). Results: Exposure to SPS increased nuclear GR expression and GR binding to Bcl-2 gene, and decreased Bcl-2 mRNA expression. Administration of GR antagonist immediately after SPS prevented activation of the glucocorticoid cascade, hippocampal apoptosis, and impairment FME in SPS rats. Conclusion: The activation of GRs in response to severe stress may trigger the pathophysiological cascade leading to impaired FME and hippocampal apoptosis. In contrast, administration of GR antagonist could be useful for preventing the development of PTSD.This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (a grant-in aid for Scientific Research, C) Grant Number JP18K07562, and Takeda Science Foundation

    Dynorphin induced magnetic ordering in lipid bilayers as studied by 31P NMR spectroscopy

    Get PDF
    AbstractLipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1–17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (Tm=24°C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1–13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1–17) near at Tm but not for the system containing A(1–13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at Tm. These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1–17). It turned out that the bilayers are spontaneously aligned to the magnetic field above Tm in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1–13). It was proved that DMPC bilayer in the presence of dynorphin A(1–17) forms vesicles above Tm, because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape

    Difficulties Facing Junior Physicians and Solutions Toward Delivering End-of-Life Care for Patients with Cancer: A Nationwide Survey in Japan

    Get PDF
    Background: Junior physicians' perceived difficulty in end-of-life care of patients with cancer has not been structurally investigated; therefore, current challenges and solutions in this area remain unknown. Objectives: To identify some difficulties junior physicians face in delivering end-of-life care for patients with cancer and to clarify the support required to reduce these difficulties. Design: A nationwide survey was conducted in over 300 institutions selected randomly from 1037 clinical training hospitals in Japan. Participants: From each of these institutions, two resident physicians of postgraduate year (PGY) 1 or 2, two clinical fellows of PGY 3–5, and an attending physician were requested to respond to the survey. Measurements: The survey investigated issues regarding end-of-life care using the palliative care difficulties scale with two additional domains (“discussion about end-of-life care” and “death pronouncement”). Items related to potential solutions for alleviating the difficulties as well were investigated. Results: A total of 198 resident physicians, 134 clinical fellows, and 96 attending physicians responded to the survey (response rate: 33.0%, 22.3%, and 32.0%). The results revealed that junior physicians face difficulties within specific domains of end-of-life care. The most challenging domain comprised communication and end-of-life discussion with patients and family members, symptom alleviation, and death pronouncement. The most favored supportive measure for alleviating these difficulties was mentorship, rather than educational opportunities or resources regarding end-of-life care. Conclusion: The findings of this study reveal the need for further effort to enrich the mentorship and support systems for junior physicians delivering end-of-life care

    Applications of Carbon Nanotubes in Bone Regenerative Medicine

    Get PDF
    Scaffolds are essential for bone regeneration due to their ability to maintain a sustained release of growth factors and to provide a place where cells that form new bone can enter and proliferate. In recent years, scaffolds made of various materials have been developed and evaluated. Functionally effective scaffolds require excellent cell affinity, chemical properties, mechanical properties, and safety. Carbon nanotubes (CNTs) are fibrous nanoparticles with a nano-size diameter and have excellent strength and chemical stability. In the industrial field, they are used as fillers to improve the performance of materials. Because of their excellent physicochemical properties, CNTs are studied for their promising clinical applications as biomaterials. In this review article, we focused on the results of our research on CNT scaffolds for bone regeneration, introduced the promising properties of scaffolds for bone regeneration, and described the potential of CNT scaffolds.ArticleNANOMATERIALS. 10(4):659 (2020)journal articl

    A New Deep State-Space Analysis Framework for Patient Latent State Estimation and Classification from EHR Time Series Data

    Full text link
    Many diseases, including cancer and chronic conditions, require extended treatment periods and long-term strategies. Machine learning and AI research focusing on electronic health records (EHRs) have emerged to address this need. Effective treatment strategies involve more than capturing sequential changes in patient test values. It requires an explainable and clinically interpretable model by capturing the patient's internal state over time. In this study, we propose the "deep state-space analysis framework," using time-series unsupervised learning of EHRs with a deep state-space model. This framework enables learning, visualizing, and clustering of temporal changes in patient latent states related to disease progression. We evaluated our framework using time-series laboratory data from 12,695 cancer patients. By estimating latent states, we successfully discover latent states related to prognosis. By visualization and cluster analysis, the temporal transition of patient status and test items during state transitions characteristic of each anticancer drug were identified. Our framework surpasses existing methods in capturing interpretable latent space. It can be expected to enhance our comprehension of disease progression from EHRs, aiding treatment adjustments and prognostic determinations.Comment: 21 pages, 6 figure

    Physico-Chemical, In Vitro, and In Vivo Evaluation of a 3D Unidirectional Porous Hydroxyapatite Scaffold for Bone Regeneration

    Get PDF
    The unidirectional porous hydroxyapatite HAp (UDPHAp) is a scaffold with continuous communicated pore structure in the axial direction. We evaluated and compared the ability of the UDPHAp as a three-dimensional (3D) bone tissue engineering scaffold to the interconnected calcium porous HAp ceramic (IP-CHA). To achieve this, we evaluated in vitro the compressive strength, controlled rhBMP-2 release behavior, adherent cell morphology, cell adhesion manner, and cell attachment of UDPHAp. As a further in vivo experiment, UDPHAp and IP-CHA with rhBMP-2 were transplanted into mouse calvarial defects to evaluate their bone-forming ability. The Results demonstrated that the maximum compressive strengths of the UDPHAp was 7.89 +/- 1.23 MPa and higher than that of IP-CHA (1.92 +/- 0.53 MPa) (p = 0.0039). However, the breaking energies were similar (8.99 +/- 2.72 vs. 13.95 +/- 5.69 mJ, p = 0.055). The UDPHAp released rhBMP-2 more gradually in vivo. Cells on the UDPHAp adhered tightly to the surface, which had grown deeply into the scaffolds. A significant increase in cell number on the UDPHAp was observed compared to the IP-CHA on day 8 (102,479 +/- 34,391 vs. 32,372 +/- 29,061 estimated cells per scaffold, p = 0.0495). In a mouse calvarial defect model, the percentages of new bone area (mature bone + trabecular bone) in the 2x field were 2.514% +/- 1.224% for the IP-CHA group and 7.045% +/- 2.055% for the UDPHAp group, and the percentage was significantly higher in the UDPHAp group (p = 0.0209). While maintaining the same strength as the IP-CHA, the UDPHAp with 84% porosity showed a high cell number, high cell invasiveness, and excellent bone formation. We believe the UDPHAp is an excellent material that can be applied to bone regenerative medicine.ArticleMATERIALS. 10(1):33 (2017)journal articl

    Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    Get PDF
    This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs - VGCF (R)-X, VGCF (R)-S, and VGCF (R) (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) - and three CSCNTs of different lengths (CS-L, 20-80 mu m; CS-S, 0.5-20 mu m; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1-50 mu g/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 mu g/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs.ArticleINTERNATIONAL JOURNAL OF NANOMEDICINE. 9:1979-1990 (2014)journal articl
    corecore