97 research outputs found

    UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice

    Get PDF
    Background: Brown adipose tissue (BAT) is a site of metabolic thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1) and represents a target for a therapeutic intervention in obesity. Cold exposure activates UCP1-mediated thermogenesis in BAT and causes drastic changes in glucose, lipid, and amino acid metabolism; however, the relationship between these metabolic changes and UCP1-mediated thermogenesis is not fully understood. Methods: We conducted metabolomic and GeneChip array analyses of BAT after 4-h exposure to cold temperature (10 °C) in wild-type (WT) and UCP1-KO mice. Results: Cold exposure largely increased metabolites of the glycolysis pathway and lactic acid levels in WT, but not in UCP1-KO, mice, indicating that aerobic glycolysis is enhanced as a consequence of UCP1-mediated thermogenesis. GeneChip array analysis of BAT revealed that there were 2865 genes upregulated by cold exposure in WT mice, and 838 of these were upregulated and 74 were downregulated in UCP1-KO mice. Pathway analysis revealed the enrichment of genes involved in fatty acid (FA) β oxidation and triglyceride (TG) synthesis in both WT and UCP1-KO mice, suggesting that these metabolic pathways were enhanced by cold exposure independently of UCP1-mediated thermogenesis. FA and cholesterol biosynthesis pathways were enhanced only in UCP1-KO mice. Cold exposure also significantly increased the BAT content of proline, tryptophan, and phenylalanine amino acids in both WT and UCP1-KO mice. In WT mice, cold exposure significantly increased glutamine content and enhanced the expression of genes related to glutamine metabolism. Surprisingly, aspartate was almost completely depleted after cold exposure in UCP1-KO mice. Gene expression analysis suggested that aspartate was actively utilized after cold exposure both in WT and UCP1-KO mice, but it was replenished from intracellular N-acetyl-aspartate in WT mice. Conclusions: These results revealed that cold exposure induces UCP1-mediated thermogenesis-dependent glucose utilization and UCP1-independent active lipid metabolism in BAT. In addition, cold exposure largely affects amino acid metabolism in BAT, especially UCP1-dependently enhances glutamine utilization. These results contribute a comprehensive understanding of UCP1-mediated thermogenesis-dependent and thermogenesis-independent metabolism in BAT

    Temperature Changes in Brown Adipocytes Detected with a Bimaterial Microcantilever

    Get PDF
    AbstractMammalian cells must produce heat to maintain body temperature and support other biological activities. Methods to measure a cell’s thermogenic ability by inserting a thermometer into the cell or measuring the rate of oxygen consumption in a closed vessel can disturb its natural state. Here, we developed a noninvasive system for measuring a cell’s heat production with a bimaterial microcantilever. This method is suitable for investigating the heat-generating properties of cells in their native state, because changes in cell temperature can be measured from the bending of the microcantilever, without damaging the cell and restricting its supply of dissolved oxygen. Thus, we were able to measure increases in cell temperature of <1 K in a small number of murine brown adipocytes (n = 4–7 cells) stimulated with norepinephrine, and observed a slow increase in temperature over several hours. This long-term heat production suggests that, in addition to converting fatty acids into heat energy, brown adipocytes may also adjust protein expression to raise their own temperature, to generate more heat. We expect this bimaterial microcantilever system to prove useful for determining a cell’s state by measuring thermal characteristics

    Perilipin Overexpression in White Adipose Tissue Induces a Brown Fat-Like Phenotype

    Get PDF
    Background: Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Previously, we reported that adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype, we performed additional studies in this transgenic mouse model. Methodology and Principal Findings: When compared to control animals, whole body energy expenditure was increased in the transgenic mice. Subsequently, we performed DNA microarray analysis and real-time PCR on white adipose tissue. Consistent with the metabolic chamber data, we observed increased expression of genes associated with fatty acid β-oxidation and heat production, and a decrease in the genes associated with lipid synthesis. Gene expression of Pgc1a, a regulator of fatty acid oxidation and Ucp1, a brown adipocyte specific protein, was increased in the white adipose tissue of the transgenic mice. This observation was subsequently verified by both Western blotting and histological examination. Expression of RIP140, a regulator of white adipocyte differentiation, and the lipid droplet protein FSP27 was decreased in the transgenic mice. Importantly, FSP27 has been shown to control gene expression of these crucial metabolic regulators. Overexpression of PeriA in 3T3-L1 adipocytes also reduced FSP27 expression and diminished lipid droplet size. Conclusions: These findings demonstrate that overexpression of PeriA in white adipocytes reduces lipid droplet size by decreasing FSP27 expression and thereby inducing a brown adipose tissue-like phenotype. Our data suggest that modulation of lipid droplet proteins in white adipocytes is a potential therapeutic strategy for the treatment of obesity and its related disorders

    Deficient of a Clock Gene, Brain and Muscle Arnt-Like Protein-1 (BMAL1), Induces Dyslipidemia and Ectopic Fat Formation

    Get PDF
    A link between circadian rhythm and metabolism has long been discussed. Circadian rhythm is controlled by positive and negative transcriptional and translational feedback loops composed of several clock genes. Among clock genes, the brain and muscle Arnt-like protein-1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) play important roles in the regulation of the positive rhythmic transcription. In addition to control of circadian rhythm, we have previously shown that BMAL1 regulates adipogenesis. In metabolic syndrome patients, the function of BMAL1 is dysregulated in visceral adipose tissue. In addition, analysis of SNPs has revealed that BMAL1 is associated with susceptibility to hypertension and type II diabetes. Furthermore, the significant roles of BMAL1 in pancreatic β cells proliferation and maturation were recently reported. These results suggest that BMAL1 regulates energy homeostasis. Therefore, in this study, we examined whether loss of BMAL1 function is capable of inducing metabolic syndrome. Deficient of the Bmal1 gene in mice resulted in elevation of the respiratory quotient value, indicating that BMAL1 is involved in the utilization of fat as an energy source. Indeed, lack of Bmal1 reduced the capacity of fat storage in adipose tissue, resulting in an increase in the levels of circulating fatty acids, including triglycerides, free fatty acids, and cholesterol. Elevation of the circulating fatty acids level induced the formation of ectopic fat in the liver and skeletal muscle in Bmal1 -/- mice. Interestingly, ectopic fat formation was not observed in tissue-specific (liver or skeletal muscle) Bmal1 -/- mice even under high fat diet feeding condition. Therefore, we were led to conclude that BMAL1 is a crucial factor in the regulation of energy homeostasis, and disorders of the functions of BMAL1 lead to the development of metabolic syndrome

    Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders

    No full text
    In mammals including humans, there are two types of adipose tissue, white and brown adipose tissues (BATs). White adipose tissue is the primary site of energy storage, while BAT is a specialized tissue for non-shivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. It is now established that BAT, through its thermogenic and energy dissipating activities, plays a role in the regulation of body temperature, wholebody energy expenditure, and body fatness. Moreover, increasing evidence has demonstrated that BAT secretes various paracrine and endocrine factors, which influence other peripheral tissues and control systemic metabolic homeostasis, suggesting BAT as a metabolic regulator, other than for thermogenesis. In fact, clinical studies have revealed an association of BAT not only with metabolic disorders such as insulin resistance, diabetes, dyslipidemia, and fatty liver, but also with cardiovascular diseases including hypertension and atherosclerosis. Thus, BAT is an intriguing tissue combating obesity and related metabolic diseases. In this review, we summarize current knowledge on human BAT, focusing its patho-physiological roles in energy homeostasis, obesity and related metabolic disorders. The effects of aging and sex on BAT are also discussed

    Hypothalamic prepro-orexin mRNA level is inversely correlated to the non-rapid eye movement sleep level in high-fat diet-induced obese mice

    Get PDF
    Orexins are hypothalamic neuropeptides, which play important roles in the regulation and maintenance of sleep/wakefulness states and energy homeostasis. To evaluate whether alterations in orexin system is associated with the sleep/wakefulness abnormalities observed in obesity, we examined the mRNA expression of prepro-orexin, orexin receptor type 1 (orexin 1r), and orexin receptor type 2 (oxexin 2r) in the hypothalamus in mice fed with a normal diet (ND) and high-fat diet (HFD)-induced obese mice. We also compared their relationships with sleep/wakefulness. Twenty-four, 4-week-old, male C57BL/6J mice were divided randomly into three groups, which received the following: (1) ND for 17 weeks; (2) HFD for 17 weeks; and (3) ND for 7 weeks and HFD for a further 10 weeks. The body weights of mice fed the HFD for 10-17 weeks were 112-150% of the average body weight of the ND group. The daily amount of non-rapid eye movement (NREM) sleep increased significantly in HFD-fed mice. These changes were accompanied by increases in the number but decreases in the duration of each NREM sleep episode. In addition, brief awakenings (<20 s epoch) during NREM sleep was nearly 2-fold more frequent. The mRNA level of prepro-orexin in the hypothalamus was significantly reduced in HFD-induced obese mice, whereas the levels of orexin 1r and orexin 2r were unaffected. The daily amount of NREM sleep was negatively correlated with the hypothalamic prepro-orexin mRNA level, so these results suggest that the increased NREM sleep levels in HFD-induced obese mice are attributable to impaired orexin activity. (C) 2013 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved

    Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells

    Get PDF
    High mobility group protein B1 (HMGB1) is a late inflammatory mediator that exaggerates septic symptoms. Adiponectin, an adipokine, has potent anti-inflammatory properties. However, possible effects of adiponectin on lipopolysaccharide-(LPS-) induced HMGB1 release are unknown. The aim of this study was to investigate effects of full length adiponectin on HMGB1 release in LPS-stimulated RAW 264 macrophage cells. Treatment of the cells with LPS alone significantly induced HMGB1 release associated with HMGB1 translocation from the nucleus to the cytosol. However, prior treatment with adiponectin suppressed LPS-induced HMGB1 release and translocation. The anti-inflammatory cytokine interleukin-(IL-) 10 similarly suppressed LPS-induced-HMGB1 release. Adiponectin treatment decreased toll-like receptor 4 (TLR4) mRNA expression and increased heme oxygenase-(HO-) 1 mRNA expression without inducing IL-10 mRNA, while IL-10 treatment decreased TLR2 and HMGB1 mRNA expression and increased the expression of IL-10 andHO-1mRNA. Treatment with the HO-1 inhibitor ZnPP completely prevented the suppression of HMGB1 release by adiponectin but only partially inhibited that induced by IL-10. Treatment with compound C, an AMP kinase (AMPK) inhibitor, abolished the increase in HO-1 expression and the suppression of HMGB1 release mediated by adiponectin. In conclusion, our results indicate that adiponectin suppresses HMGB1 release by LPS through an AMPK-mediated and HO-1-dependent IL-10-independent pathway

    Adiponectin suppression of late inflammatory mediator, HMGB1-induced cytokine expression in RAW264 macrophage cells

    Get PDF
    High-mobility group protein B1 (HMGB1) is a late inflammatory mediator released from inflammatory cells when stimulated, resulting in exaggerating septic symptoms. We recently demonstrated that full-length adiponectin, a potent anti-inflammatory adipokine, inhibits lipopolysaccharide-induced HMGB1 release. However, the effects of adiponectin on HMGB1-induced exaggerating signals currently remain unknown. This study aimed to investigate the effects of adiponectin on the pro-inflammatory function of HMGB1 in RAW264 macrophage cells. The treatment of RAW264 cells with HMGB1 significantly up-regulated the mRNA expression of tumour necrosis factor-alpha, interleukin-1 beta and C-X-C motif chemokine 10. HMGB1-induced cytokine expression was markedly suppressed by a toll-like receptor 4 (TLR4) antagonist and slightly suppressed by an antagonist of the receptor for advanced glycation end products. A prior treatment with full-length or globular adiponectin dose-dependently suppressed all types of HMGB1-induced cytokine expression, and this suppression was abolished by compound C, an AMPK inhibitor, but not by the haem oxygenase (HO)-1 inhibitor, zinc protoporphyrin IX. Both forms of adiponectin also reduced the mRNA expression of TLR4. These results suggest that full-length and globular adiponectin suppress HMGB1-induced cytokine expression through an AMPK-mediated HO-1-independent pathway
    corecore