75 research outputs found

    Restoration of endogenous wild-type p53 activity in a glioblastoma cell line with intrinsic temperature-sensitive p53 induces growth arrest but not apoptosis.

    Get PDF
    p53 protein is a transcription factor involved in multiple tumor-suppressor activities including cell cycle control and apoptosis. TP53 gene is frequently mutated in glioblastoma, suggesting the importance of inactivation of this gene product in gliomagenesis. Restoration of p53 function in glioblastoma cell lines deficient for p53 has shown that p53 induces growth arrest or apoptosis depending on the cell line and vector used to transduce wild-type TP53 alleles. Considering that astrocytes grow and express p53, it is not clear whether these results reflect physiologic responses or the result of p53 overexpression in combination with cellular responses to viral vector infection. Here, we reassessed this issue using a glioblastoma cell line (LN382) that expresses an endogenous temperature-sensitive mutant p53. This cell line expresses TP53 alleles (100% as determined by a p53 transcriptional assay in yeast) mutated at codon 197 GTG (Val) > CTG (Leu). We found that the p53 protein in these cells acted as an inactive mutant at 37 degrees C and as a functional wild-type p53 below 34 degrees C as demonstrated by several lines of evidence, including (i) restoration of transactivating ability in yeast, (ii) induction of p53-modulated genes such as CDKN1(p21) and transforming growth factor-alpha, (iii) disappearance of accumulated p53 protein in the nucleus and (iv) decrease in steady state p53 protein levels. This temperature switch allowed p53 levels, which were close to physiological levels to dramatically reduce LN382 cell proliferation by inducing a G(1)/S cell cycle block, but not to induce apoptosis. The lack of apoptosis was considered to be a result of the low level p53 expression, because increasing wild-type p53 levels by adenoviral-mediated gene transfer caused apoptosis in these cells. The LN382 cell line will be extremely useful for investigations into the roles of p53 in cellular responses to a variety of stimuli or damages

    Up-Regulation of MicroRNA-21 Correlates with Lower Kidney Cancer Survival

    Get PDF
    MicroRNA-21 is up-regulated in a variety of cancers like, breast, colorectal, lung, head and neck etc. However, the regulation of miR-21 in renal cell carcinoma (RCC) has not yet been studied systematically.We measured miR-21 levels in 54 pairs of kidney cancers and their normal matched tissues by real-time PCR. The expression level of miR-21 was correlated with 5 year survival and the pathological stage. Functional studies were done after inhibiting miR-21 in RCC cell lines. We studied in vitro and in vivo effects of the chemo preventive agent genistein on miR-21 expression. In 48 cases (90%), miR-21 was increased. All patients with low miR-21 expression survived 5 years, while with high miR-21 expression, only 50% survived. Higher expression of miR-21 is associated with an increase in the stage of renal cancer. Functional studies after inhibiting miRNA-21 in RCC cell lines show cell cycle arrest, induction of apoptosis and reduced invasive and migratory capabilities. Western blot analysis showed an increase in the expression of p21 and p38 MAP kinase genes and a reduction in cyclin E2. Genistein inhibited the expression of miR-21 in A-498 cells and in the tumors formed after injecting genistein treated A-498 cells in nude mice besides inhibiting tumor formation.The current study shows a clear correlation between miR-21 expression and clinical characteristics of renal cancer. Thus we believe that miR-21 can be used as a tumor marker and its inhibition may prove to be useful in controlling cancers with up-regulated miR-21

    A Study Of A Linear Compressor With A Gas Spring

    Get PDF
    corecore