14,771 research outputs found

    Anomalous Viscosity of an Expanding Quark-Gluon Plasma

    Get PDF
    We argue that an expanding quark-gluon plasma has an anomalous viscosity, which arises from interactions with dynamically generated color fields. We derive an expression for the anomalous viscosity in the turbulent plasma domain and apply it to the hydrodynamic expansion phase, when the quark-gluon plasma is near equilibrium. The anomalous viscosity dominates over the collisional viscosity for weak coupling and not too late times. This effect may provide an explanation for the apparent ``nearly perfect'' liquidity of the matter produced in nuclear collisions at the Relativistic Heavy Ion Collider without the assumption that it is a strongly coupled state.Comment: Final version accepted for publicatio

    Characterization of the initial filamentation of a relativistic electron beam passing through a plasma

    Full text link
    The linear instability that induces a relativistic electron beam passing through a return plasma current to filament transversely is often related to some filamentation mode with wave vector normal to the beam or confused with Weibel modes. We show that these modes may not be relevant in this matter and identify the most unstable mode on the two-stream/filamentation branch as the main trigger for filamentation. This sets both the characteristic transverse and longitudinal filamentation scales in the non-resistive initial stage.Comment: 4 page, 3 figures, to appear in PR

    Momentum dependence of the energy gap in the superconducting state of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu)

    Full text link
    The energy gap of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu) was probed by angle resolved photoemission spectroscopy (ARPES) using a vacuum ultraviolet laser (photon energy 6.994 eV) or He I resonance line (21.218 eV) as photon source. The results show that the gap around the node at sufficiently low temperatures can be well described by a monotonic d-wave gap function for both samples and the gap of the R=La sample is larger reflecting the higher Tc. However, an abrupt deviation from the d-wave gap function and an opposite R dependence for the gap size were observed around the antinode, which represent a clear disentanglement between the antinodal pseudogap and the nodal superconducting gap.Comment: Submitted as the proceedings of LT2

    Structure of dimension-six derivative interactions in pseudo Nambu-Goldstone N Higgs doublet models

    Full text link
    We derive the general structure of dimension-six derivative interactions in the N Higgs doublet models, where Higgs fields arise as pseudo Nambu-Goldstone modes of a strongly interacting sector. We show that there are several relations among the dimension-six operators, and therefore the number of independent operators decreases compared with models on which only SU(2)_L x U(1)_Y invariance is imposed. As an explicit example, we derive scattering amplitudes of longitudinal gauge bosons and Higgs bosons at high energy on models involving two Higgs doublets, and compare them with the amplitudes in the case of one Higgs doublet.Comment: 49 pages, 10 figure

    Dynamical replica theoretic analysis of CDMA detection dynamics

    Full text link
    We investigate the detection dynamics of the Gibbs sampler for code-division multiple access (CDMA) multiuser detection. Our approach is based upon dynamical replica theory which allows an analytic approximation to the dynamics. We use this tool to investigate the basins of attraction when phase coexistence occurs and examine its efficacy via comparison with Monte Carlo simulations.Comment: 18 pages, 2 figure

    Generating functional analysis of CDMA detection dynamics

    Get PDF
    We investigate the detection dynamics of the parallel interference canceller (PIC) for code-division multiple-access (CDMA) multiuser detection, applied to a randomly spread, fully syncronous base-band uncoded CDMA channel model with additive white Gaussian noise (AWGN) under perfect power control in the large-system limit. It is known that the predictions of the density evolution (DE) can fairly explain the detection dynamics only in the case where the detection dynamics converge. At transients, though, the predictions of DE systematically deviate from computer simulation results. Furthermore, when the detection dynamics fail to convergence, the deviation of the predictions of DE from the results of numerical experiments becomes large. As an alternative, generating functional analysis (GFA) can take into account the effect of the Onsager reaction term exactly and does not need the Gaussian assumption of the local field. We present GFA to evaluate the detection dynamics of PIC for CDMA multiuser detection. The predictions of GFA exhibits good consistency with the computer simulation result for any condition, even if the dynamics fail to convergence.Comment: 14 pages, 3 figure
    • …
    corecore