35 research outputs found
Aureobasidium pullulans produced β-glucan is effective to enhance Kurosengoku soybean extract induced Thrombospondin-1 expression
Black yeast, Aureobasidium pullulans is extracellularly produced β-(1,3), (1,6)-D-glucan (β-glucan) under certain conditions. In this study, using Glycine max cv. Kurosengoku (Kurosengoku soybeans), the production of β-glucan through fermentation of A. pullulans was evaluated, and the effects of A. pullulans cultured fluid (AP-CF) containing β-glucan made with Kurosengoku soybeans (kAP-CF) on a human monocyte derived cell line, Mono Mac 6 cells were investigated. Concentration of β-glucan in kAP-CF reached the same level as normal AP-CF. An anti-angiogenic protein, Thrombospondin-1 (THBS1) was effectively induced after the stimulation with kAP-CF for comparison with AP-CF. The THBS1 is also induced after stimulation with hot water extract of Kurosengoku soybeans (KS-E), while the combined stimulation of β-glucan with KS-E more effectively induced THBS1 than that with KS-E alone. These results suggest effects of A. pullulans-produced β-glucan on the enhancement of Kurosengoku soybean-induced THBS1 expression
Stimulation with the Aureobasidium pullulans-produced β-glucan effectively induces interferon stimulated genes in macrophage-like cell lines
A β-(1,3),(1,6)-D-glucan produced by A. pullulans (AP-PG) is known to be an immune stimulating agent. In this study, we demonstrate that the stimulation with AP-PG effectively induces the interferon (IFN) stimulated genes (ISGs) in macrophage-like cell lines. The ISGs, Mx1, ISG15, and viperin mRNAs were significantly increased in RAW264.7 cells after stimulation with AP-PG. The stimulation with AP-PG transiently induced IFN-β mRNA. However, the expression of viperin mRNA was also increased after stimulation with AP-PG even when new protein synthesis was completely blocked by treatment with cycloheximide. Further, in IFN-α receptor knockdown RAW264.7 cells, AP-PG stimulation more effectively induced viperin mRNA compared with that of IFN-α stimulation. The phosphorylation of Ser 727 in STAT1 involved in the enhancement of STAT1 activation was immediately increased after stimulation with AP-PG. In addition, viperin mRNA expression induced after stimulation with IFN-α was significantly increased by combined stimulation with AP-PG. These results suggest that stimulation with AP-PG effectively induces the ISGs through the induction of IFN and the enhancement of STAT1-mediated transcriptional activation
Oral administration of the β-glucan produced by Aureobasidium pullulans ameliorates development of atherosclerosis in apolipoprotein E deficient mice
The Aureobasidium pullulans-produced β-glucan (AP-PG) is an immune stimulator, and believed to exhibit beneficial effects on health through its immune stimulating activity. Here, the effect of oral administration of AP-PG on high-fat diet (HFD)-induced atherosclerosis was evaluated using apolipoprotein E deficient mice, a widely used mouse model for atherosclerosis. The results demonstrated that HFD-induced development of atherosclerosis was significantly reduced in the AP-PG-treated mice when compared with that of the control mice. In serological analysis, blood levels of oxidized low-density lipoprotein cholesterol, a well-known risk factor for the development of atherosclerosis, were significantly reduced in the AP-PG-treated group of mice. Further, immunohistochemical analysis using MOMA-2 antibody showed that oral administration of AP-PG is effective in ameliorating vascular accumulation of macrophages. These data suggest the possibility that oral administration of AP-PG is effective in ameliorating HFD-induced development of atherosclerosis
Oral administration of the Aureobasidium pullulans-derived β-glucan effectively prevents the development of high fat diet-induced fatty liver in mice
Aureobasidium pullulans-derived β-glucan (AP-PG) consisting of a β-(1,3)-linked glucose main chain and β-(1,6)-linked glucose branches is taken as a supplement to improve health. This study demonstrates that oral administration of AP-PG is effective to prevent the development of high-fat diet (HFD)-induced fatty liver in mice. Here, C57BL/6N mice were fed with a normal diet or HFD, and AP-PG diluted in drinking water was administered orally. After 16 weeks, the serological analysis showed that HFD-induced high blood cholesterol and triglyceride levels were reduced by the oral administration of AP-PG. Further, HFD induced-fatty liver was significantly reduced by the oral administration of AP-PG. The triglyceride accumulation in the liver was also significantly reduced in mice administered AP-PG. Liver injury as indicated by an increase in serum alanine aminotransferase (ALT) in the HFD-fed mice was significantly reduced in the mice administered AP-PG orally, and the gene expression of cholesterol 7 alpha-hydroxylase (CYP7A1) which is known to be involved in cholesterol degradation in the liver was significantly increased in the AP-PG administered mice. These results suggest the possibility that the oral administration of AP-PG is effective to prevent the development of non-alcoholic fatty liver disease (NAFLD)
β-Glucan Derived from Aureobasidium pullulans Is Effective for the Prevention of Influenza in Mice
β-(1→3)-D-glucans with β-(1→6)-glycosidic linked branches produced by mushrooms, yeast and fungi are known to be an immune activation agent, and are used in anti-cancer drugs or health-promoting foods. In this report, we demonstrate that oral administration of Aureobasidium pullulans-cultured fluid (AP-CF) enriched with the β-(1→3),(1→6)-D-glucan exhibits efficacy to protect mice infected with a lethal titer of the A/Puerto Rico/8/34 (PR8; H1N1) strain of influenza virus. The survival rate of the mice significantly increased by AP-CF administration after sublethal infection of PR8 virus. The virus titer in the mouse lung homogenates was significantly decreased by AP-CF administration. No significant difference in the mRNA expression of inflammatory cytokines, and in the population of lymphocytes was observed in the lungs of mice administered with AP-CF. Interestingly, expression level for the mRNA of virus sensors, RIG-I (retinoic acid-inducible gene-I) and MDA5 (melanoma differentiation-associated protein 5) strongly increased at 5 hours after the stimulation of A. pullulans-produced purified β-(1→3),(1→6)-D-glucan (AP-BG) in murine macrophage-derived RAW264.7 cells. Furthermore, the replication of PR8 virus was significantly repressed by pre-treatment of AP-BG. These findings suggest the increased expression of virus sensors is effective for the prevention of influenza by the inhibition of viral replication with the administration of AP-CF
A small scale study on the effects of oral administration of the β-glucan produced by Aureobasidium pullulans on milk quality and cytokine expressions of Holstein cows, and on bacterial flora in the intestines of Japanese black calves
Background: The β–(1→3),(1→6)-D-glucan extracellularly produced by Aureobasidium pullulans exhibits immunomodulatory activity, and is used for health supplements. To examine the effects of oral administration of the β–(1→3),(1→6)-D-glucan to domestic animals, a small scale study was conducted using Holstein cows and newborn Japanese Black calves. Findings: Holstein cows of which somatic cell count was less than 3 x 105/ml were orally administered with or without the β-(1→3),(1→6)-D-glucan-enriched A. pullulans cultured fluid (AP-CF) for 3 months, and the properties of milk and serum cytokine expression were monitored. Somatic cell counts were not significantly changed by oral administration of AP-CF, whereas the concentration of solid non fat in the milk tended to increase in the AP-CF administered cows. The results of cytokine expression analysis in the serum using ELISA indicate that the expressions of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in all cows which were orally administered with AP-CF became slightly lower than that of control cows after the two-month treatment. On the other hand, IL-8 expression tended to indicate a moderately higher level in all treated cows after the three-month administration of AP-CF in comparison with that of the control cows. Peripartum Japanese Black beef cows and their newborn calves were orally administered with AP-CF, and bacterial flora in the intestines of the calves were analyzed by T-RFLP (terminal restriction fragment length polymorphism). The results suggest that bacterial flora are tendentiously changed by oral administration of AP-CF. Conclusions: Our data indicated the possibility that oral administration of the β–(1→3),(1→6)-D- glucan produced by A. pullulans affects cytokine expressions in the serum of Holstein cows, and influences bacterial flora in the intestines of Japanese Black calves. The findings may be helpful for further study on the efficacies of oral administration of β-(1→3),(1→6)-D-glucans on domestic animals
Stimulation of macrophages with the β-glucan produced by aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL).
A β-glucan produced by Aureobasidium pullulans (AP-PG) is consisting of a β-(1,3)-linked main chain with β-(1,6)-linked glucose side residues. Various β-glucans consisting of β-(1,3)-linked main chain including AP-PG are believed to exhibit anti-tumor activities, and actually, anti-tumor activities of AP-PG in mice have been demonstrated. In this study, we demonstrate that stimulation with AP-PG induces TRAIL expression in mouse and human macrophage-like cell lines. TRAIL is known to be a cytokine which specifically induces apoptosis in transformed cells, but not in untransformed cells. The expression of TRAIL mRNA after stimulation with AP-PG was increased in RAW264.7 cells, Mono Mac 6 cells, and macrophage-differentiated THP-1 cells. The mRNA expression of TNF-α and FasL is only weakly increased after stimulation with AP-PG. The induction activity of TRAIL by curdlan, a bacterial β-glucan, was very similar to that by AP-PG in RAW264.7 cells, but weaker in macrophage-differentiated THP-1 cells. Activation of caspases was found in HeLa cells after treatment with the supernatant of cultured medium from AP-PG-stimulated Mono Mac 6 cells, and was inhibited by the anti-TRAIL neutralizing antibody. These findings suggest that the stimulation with AP-PG effectively induces TRAIL in macrophages, and that it may be related to apoptosis induction of tumor cells