4 research outputs found

    Radiation-induced accelerated aging of the brain vasculature in young adult survivors of childhood brain tumors

    Get PDF
    Background. Cranial radiotherapy may damage the cerebral vasculature. The aim of this study was to understand the prevalence and risk factors of cerebrovascular disease (CVD) and white matter hyperintensities (WMHs) in childhood brain tumors (CBT) survivors treated with radiotherapy.Methods. Seventy CBT survivors who received radiotherapy were enrolled in a cross-sectional study at a median 20 years after radiotherapy cessation. The prevalence of and risk factors for CVD were investigated using MRI, MRA, and laboratory testing. Tumors, their treatment, and stroke-related data were retrieved from patients' files.Results. Forty-four individuals (63%) had CVD at a median age of 27 years (range, 16-43 years). The prevalence rates at 20 years for CVD, small-vessel disease, and large-vessel disease were 52%, 38%, and 16%, respectively. Ischemic infarcts were diagnosed in 6 survivors, and cerebral hemorrhage in 2. Lacunar infarcts were present in 7, periventricular or deep WMHs in 34 (49%), and mineralizing microangiopathy in 21 (30%) survivors. Multiple pathologies were detected in 44% of the participants, and most lesions were located in a high-dose radiation area. Higher blood pressure was associated with CVD and a presence of WMHs. Higher cholesterol levels increased the risk of ischemic infarcts and WMHs, and lower levels of high-density lipoprotein and higher waist circumference increased the risk of lacunar infarcts.Conclusions. Treating CBTs with radiotherapy increases the risk of early CVD and WMHs in young adult survivors. These results suggest an urgent need for investigating CVD prevention in CBT patients.</div

    Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    Get PDF
    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses

    Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2

    Get PDF
    Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB
    corecore