195 research outputs found
Current-induced magnetization reversal in a (Ga,Mn)As-based magnetic tunnel junction
We report current-induced magnetization reversal in a ferromagnetic
semiconductor-based magnetic tunnel junction (Ga,Mn)As/AlAs/(Ga,Mn)As prepared
by molecular beam epitaxy on a p-GaAs(001) substrate. A change in
magneto-resistance that is asymmetric with respect to the current direction is
found with the excitation current of 10^6 A/cm^2. Contributions of both
unpolarized and spin-polarized components are examined, and we conclude that
the partial magnetization reversal occurs in the (Ga,Mn)As layer of smaller
magnetization with the spin-polarized tunneling current of 10^5 A/cm^2.Comment: 13 pages, 3 figure
Magnetic anisotropy switching in (Ga,Mn)As with increasing hole concentration
We study a possible mechanism of the switching of the magnetic easy axis as a
function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial
magnetic anisotropy along [110] is found to exceed intrinsic cubic
magnetocrystalline anisotropy above a hole concentration of p = 1.5 * 10^21
cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth
annealing, and the temperature-dependent ac susceptibility is significantly
changed with increasing annealing time. On the basis of our recent scenario
[Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we
deduce that the growth of highly hole-concentrated cluster regions with [110]
uniaxial anisotropy is likely the predominant cause of the enhancement in [110]
uniaxial anisotropy at the high hole concentration regime. We can clearly rule
out anisotropic lattice strain as a possible origin of the switching of the
magnetic anisotropy.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction
We measure the non-dissipative supercurrent in a single InAs self-assembled
quantum dot (QD) coupled to superconducting leads. The QD occupation is both
tuned by a back-gate electrode and lateral side-gate. The geometry of the
side-gate allows tuning of the QD-lead tunnel coupling in a region of constant
electron number with appropriate orbital state. Using the side-gate effect we
study the competition between Kondo correlations and superconducting pairing on
the QD, observing a decrease in the supercurrent when the Kondo temperature is
reduced below the superconducting energy gap in qualitative agreement with
theoretical predictions
Kondo Universal Scaling for a Quantum Dot Coupled to Superconducting Leads
We study competition between the Kondo effect and superconductivity in a
single self-assembled InAs quantum dot contacted with Al lateral electrodes.
Due to Kondo enhancement of Andreev reflections the zero-bias anomaly develops
sidepeaks, separated by the superconducting gap energy Delta. For ten valleys
of different Kondo temperature T_K we tune the gap Delta with an external
magnetic field. We find that the zero-bias conductance in each case collapses
onto a single curve with Delta/kT_K as the only relevant energy scale,
providing experimental evidence for universal scaling in this system.Comment: 4 pages, 3 figure
Tuning the electrically evaluated electron Lande g factor in GaAs quantum dots and quantum wells of different well widths
We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated
from GaAs quantum well (QW) structures of different well width. We first
determine the Lande electron g factor of the QWs through resistive detection of
electron spin resonance and compare it to the enhanced electron g factor
determined from analysis of the magneto-transport. Next, we form laterally
defined quantum dots using these quantum wells and extract the electron g
factor from analysis of the cotunneling and Kondo effect within the quantum
dots. We conclude that the Lande electron g factor of the quantum dot is
primarily governed by the electron g factor of the quantum well suggesting that
well width is an ideal design parameter for g-factor engineering QDs
Active beating of a reconstituted synthetic minimal axoneme
Propelling microorganisms through fluids and moving fluids along cellular surfaces are essential biological functions accomplished by long, thin structures called motile cilia and flagella, whose regular, oscillatory beating breaks the time-reversal symmetry required for transport. Although top-down experimental approaches and theoretical models have allowed us to broadly characterize such organelles and propose mechanisms underlying their complex dynamics, constructing minimal systems capable of mimicking ciliary beating and identifying the role of each component remains a challenge. Here we report the bottom-up assembly of a minimal synthetic axoneme, which we call a synthoneme, using biological building blocks from natural organisms, namely pairs of microtubules and cooperatively associated axonemal dynein motors. We show that upon provision of energy by ATP, microtubules undergo rhythmic bending by cyclic association-dissociation of dyneins. Our simple and unique beating minimal synthoneme represents a self-organized nanoscale biomolecular machine that can also help understand the mechanisms underlying ciliary beating
- …